DOI QR코드

DOI QR Code

Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins

  • Al-Fasih, M.Y. (Jamilus Research Centre, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia) ;
  • Kueh, A.B.H. (Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak) ;
  • Ibrahim, M.H.W. (Jamilus Research Centre, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia)
  • Received : 2019.10.12
  • Accepted : 2019.12.20
  • Published : 2020.01.25

Abstract

This study aims to carry out the experimental and numerical investigation on the flexural behavior of sandwich honeycomb composite (SHC) beams reinforced with novel triaxially woven fabric composite skins. Different stacking sequences of the carbon fiber reinforcement polymer (CFRP) laminate; i.e., 0°-direction of TW (TW0), 0°-direction of UD (UD0), and 90°-direction of UD (UD90) were studied, from which the flexural behavior of SHC beam behaviors reinforced with TW0/UD0 or TW0/UD90 novel laminated skins were compared with those reinforced with UD0/90 conventional laminated skins under four-point loading. Generally, TW0/UD0 SHC beams displayed the same flexural stiffness as UD0/90 SHC beams in terms of load-deflection relationships. In contrast, TW0/UD90 SHC beams showed a 70% lower efficiency than those of UD0/90 SHC. Hence, the TW0/UD0 laminate arrangement is more effective with a mass reduction of 39% compared with UD0/90 for SHC beams, although their stiffness and shear strength are practically identical.

Keywords

References

  1. ABAQUS Version 6.13 (2013), Analysis User's Guide, Dassault Systems.
  2. Al-Fasih, M.Y., Kueh A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2018), "Tow waviness and anisotropy effects on mode II fracture of triaxially woven composite", Steel Compos. Struct., 26(2), 241-253. https://doi.org/10.12989/scs.2018.26.2.241.
  3. Al-Fasih, M.Y., Kueh A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2017), "Influence of tows waviness and anisotropy on effective mode I fracture toughness of triaxially woven fabric composites", Eng. Fract. Mech., 182, 521-536. https://doi.org/10.1016/j.engfracmech.2017.03.051.
  4. Aoki, T., Yoshida, K. and Watanabe, A. (2007), "Feasibility study of triaxially-woven fabric composite for deployable structures", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, April. https://doi.org/10.2514/6.2007-1811.
  5. ASTM C393 (2002), Standard Test Method for Flexural Properties of Sandwich Constructions; The American Society for Testing and Materials, USA.
  6. ASTM D3039/D3039M (2008), Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM International, West Conshohocken, PA, USA.
  7. ASTM D3410/D3410M (2003), Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading; ASTM West Conshohocken, PA USA.
  8. ASTM D3518/D3518M (2001), Standard Test Method for in-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a 45 Laminate; American Society of Testing Materials, USA.
  9. Belingardi, G., Martella, P. and Peroni, L. (2007), "Fatigue analysis of honeycomb-composite sandwich beams", Compos. Part A Appl. Sci. Manuf., 38(4), 1183-1191. https://doi.org/10.1016/j.compositesa.2006.06.007.
  10. Belouettar, S., Abbadi, A., Azari, Z., Belouettar, R. and Freres, P. (2009), "Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests", Compos. Struct., 87(3), 265-273. https://doi.org/10.1016/j.compstruct.2008.01.015.
  11. Borsellino, C., Calabrese, L. and Valenza, A. (2004), "Experimental and numerical evaluation of sandwich composite structures", Compos. Sci. and Technol., 64(10-11), 1709-1715. https://doi.org/10.1016/j.compscitech.2004.01.003.
  12. Caprino, G. and Teti, R. (1989), Sandwich Structures: Handbook, II Prato, Padua, Italy.
  13. Dai, J. and Hahn, H.T. (2003), "Flexural behavior of sandwich beams fabricated by vacuum-assisted resin transfer molding", Compos. Struct., 61(3), 247-253. https://doi.org/10.1016/S0263-8223(03)00040-0.
  14. Daniel, I.M. and Abot, J.L. (2000), "Fabrication, testing and analysis of composite sandwich beams", Compos. Sci. Technol., 60(12-13), 2455-2463. https://doi.org/10.1016/S0266-3538(00)00039-7.
  15. Daniel, I.M., Gdoutos, E.E., Wang, K.A. and Abot, J.L. (2002), "Failure modes of composite sandwich beams", Int. J. Damage Mech., 11(4), 309-334. https://doi.org/10.1106/105678902027247.
  16. Fan, H.L., Meng, F.H. and Yang, W., (2007), "Sandwich panels with Kagome lattice cores reinforced by carbon fibers", Compos. Struct. 81(4), 533-539. https://doi.org/10.1016/j.compstruct.2006.09.011.
  17. Fan, H., Yang, L., Sun, F. and Fang, D., (2013). "Compression and Bending Performances of Carbon Fiber Reinforced Lattice-Core Sandwich Composites." Compos. Part A Appl. Sci. Manuf., 52, 118-25. https://doi.org/10.1016/j.compositesa.2013.04.013.
  18. Ferdous, W., Manalo, A. and Aravinthan, T. (2017), "Effect of beam orientation on the static behaviour of phenolic core sandwich composites with different shear span-to-depth ratios", Compos. Struct., 168, 292-304. https://doi.org/10.1016/j.compstruct.2017.02.061.
  19. Fotsing, E.A., Leclerc, C., Sola, M., Ross, A. and Ruiz, E. (2016), "Mechanical properties of composite sandwich structures with core or face sheet discontinuities", Compos. Part B Eng., 88, 229-239. https://doi.org/10.1016/j.compositesb.2015.10.037.
  20. Fotsing, E.A., Leclerc, C., Sola, M., Ross, A. and Ruiz, E. (2008), "Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending", Eng. Fail. Anal., 15(5), 555-562. https://doi.org/10.1016/j.engfailanal.2007.04.004.
  21. Gdoutos, E.E. and Daniel, I.M. (2008), "Failure Modes of Composite Sandwich Beams." Theor. Appl. Mech.,35(1-3), 105-18. https://doi.org/10.2298/TAM0803105G.
  22. He, M. and Hu, W., (2008). "A study on composite honeycomb sandwich panel structure", Mater. Des., 29(3), 709-713. https://doi.org/10.1016/j.matdes.2007.03.003.
  23. Ivanez, I. and Sanchez-Saez, S. (2013), "Numerical modelling of the low-velocity impact response of composite sandwich Beams with honeycomb core", Compos. Struct., 106, 716-723. https://doi.org/10.1016/j.compstruct.2013.07.025.
  24. Kueh, A.B.H. (2012), "Fitting-free hyperelastic strain energy formulation for triaxial weave fabric composites", Mech. Mater., 47, 11-23. https://doi.org/10.1016/j.mechmat.2012.01.001.
  25. Kueh, A.B.H. (2014), "Size-influenced mechanical isotropy of singly-plied triaxially woven fabric composites", Compos. Part A Appl. Sci. Manuf., 57, 76-87. https://doi.org/10.1016/j.compositesa.2013.11.005.
  26. Lingaiah, K. and Suryanarayana, B.G. (1991), "Strength and stiffness of sandwich beams in bending", Exp. Mech., 31(1), 1-7. https://doi.org/10.1007/BF02325715.
  27. Lu, C., Zhao, M., Jie, L., Wang, J., Gao, Y., Cui, X. and Chen, P. (2015), "Stress distribution on composite honeycomb sandwich structure suffered from bending load", Procedia Eng., 99, 405-12. https://doi.org/10.1016/j.proeng.2014.12.554.
  28. Manalo, A.C., Aravinthan, T., Karunasena, W. and Islam, M.M. (2010), "Flexural behaviour of structural fibre composite sandwich beams in flatwise and edgewise positions", Compos. Struct., 92(4), 984-995. https://doi.org/10.1016/j.compstruct.2009.09.046.
  29. Mines, R.A.W., Worrall, C.M. and Gibson, A.G. (1994), "The static and impact behaviour of polymer composite sandwich beams", Composites., 25(2), 95-110. https://doi.org/10.1016/0010-4361(94)90003-5.
  30. Russo, A. and Zuccarello, B. (2007), "Experimental and numerical evaluation of the mechanical behaviour of GFRP sandwich panels", Compos. Struct., 81(4), 575-586. https://doi.org/10.1016/j.compstruct.2006.10.007.
  31. Selver, E. and Kaya, G. (2019), "Flexural properties of sandwich composite laminates reinforced with glass and carbon Z-pins", J. Compos. Mater., 53(10), 1347-1359. https://doi.org/10.1177/0021998318800146.
  32. Shenhar, Y., Frostig, Y. and Altus, E. (1996), "Stresses and failure patterns in the bending of sandwich beams with transversely flexible cores and laminated composite skins", Compos. Struct., 35(2), 143-152. https://doi.org/10.1016/0263-8223(96)00016-5.
  33. Tekalur, S.A., Bogdanovich, A.E. and Shukla, A. (2009), "Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core", Compos. Sci. Technol., 69(6), 736-753. https://doi.org/10.1016/j.compscitech.2008.03.017.
  34. Wang, J., Shi, C., Yang, N., Sun, H., Liu, Y. and Song, B., (2018), "Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body", Compos. Struct., 184, 1189-1196. https://doi.org/10.1016/j.compstruct.2017.10.038.
  35. Xu, D., Ganesan, R. and Hoa, S.V. (2007), "Buckling analysis of tri-axial woven fabric composite structures subjected to bi-axial loading", Compos. Struct., 78(1), 140-152. https://doi.org/10.1016/j.compstruct.2005.08.021.
  36. Xu, D., Ganesan, R. and Hoa, S.V. (2005), "Buckling analysis of tri-axial woven fabric composite structures. Part I: non-linear finite element formulation", Compos. Struct., 67(1), 37-55. https://doi.org/10.1016/j.compstruct.2004.01.004.
  37. Zhao, Q.I. and Hoa, S.V. (2003), "Thermal deformation behavior of triaxial woven fabric (TWF) composites with open holes", J. Compos. Mater., 37(18), 1629-1649. https://doi.org/10.1177/0021998303035192.