References
- ABAQUS Version 6.13 (2013), Analysis User's Guide, Dassault Systems.
- Al-Fasih, M.Y., Kueh A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2018), "Tow waviness and anisotropy effects on mode II fracture of triaxially woven composite", Steel Compos. Struct., 26(2), 241-253. https://doi.org/10.12989/scs.2018.26.2.241.
- Al-Fasih, M.Y., Kueh A.B.H., Abo Sabah, S.H. and Yahya, M.Y. (2017), "Influence of tows waviness and anisotropy on effective mode I fracture toughness of triaxially woven fabric composites", Eng. Fract. Mech., 182, 521-536. https://doi.org/10.1016/j.engfracmech.2017.03.051.
- Aoki, T., Yoshida, K. and Watanabe, A. (2007), "Feasibility study of triaxially-woven fabric composite for deployable structures", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, April. https://doi.org/10.2514/6.2007-1811.
- ASTM C393 (2002), Standard Test Method for Flexural Properties of Sandwich Constructions; The American Society for Testing and Materials, USA.
- ASTM D3039/D3039M (2008), Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM International, West Conshohocken, PA, USA.
- ASTM D3410/D3410M (2003), Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading; ASTM West Conshohocken, PA USA.
- ASTM D3518/D3518M (2001), Standard Test Method for in-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a 45 Laminate; American Society of Testing Materials, USA.
- Belingardi, G., Martella, P. and Peroni, L. (2007), "Fatigue analysis of honeycomb-composite sandwich beams", Compos. Part A Appl. Sci. Manuf., 38(4), 1183-1191. https://doi.org/10.1016/j.compositesa.2006.06.007.
- Belouettar, S., Abbadi, A., Azari, Z., Belouettar, R. and Freres, P. (2009), "Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests", Compos. Struct., 87(3), 265-273. https://doi.org/10.1016/j.compstruct.2008.01.015.
- Borsellino, C., Calabrese, L. and Valenza, A. (2004), "Experimental and numerical evaluation of sandwich composite structures", Compos. Sci. and Technol., 64(10-11), 1709-1715. https://doi.org/10.1016/j.compscitech.2004.01.003.
- Caprino, G. and Teti, R. (1989), Sandwich Structures: Handbook, II Prato, Padua, Italy.
- Dai, J. and Hahn, H.T. (2003), "Flexural behavior of sandwich beams fabricated by vacuum-assisted resin transfer molding", Compos. Struct., 61(3), 247-253. https://doi.org/10.1016/S0263-8223(03)00040-0.
- Daniel, I.M. and Abot, J.L. (2000), "Fabrication, testing and analysis of composite sandwich beams", Compos. Sci. Technol., 60(12-13), 2455-2463. https://doi.org/10.1016/S0266-3538(00)00039-7.
- Daniel, I.M., Gdoutos, E.E., Wang, K.A. and Abot, J.L. (2002), "Failure modes of composite sandwich beams", Int. J. Damage Mech., 11(4), 309-334. https://doi.org/10.1106/105678902027247.
- Fan, H.L., Meng, F.H. and Yang, W., (2007), "Sandwich panels with Kagome lattice cores reinforced by carbon fibers", Compos. Struct. 81(4), 533-539. https://doi.org/10.1016/j.compstruct.2006.09.011.
- Fan, H., Yang, L., Sun, F. and Fang, D., (2013). "Compression and Bending Performances of Carbon Fiber Reinforced Lattice-Core Sandwich Composites." Compos. Part A Appl. Sci. Manuf., 52, 118-25. https://doi.org/10.1016/j.compositesa.2013.04.013.
- Ferdous, W., Manalo, A. and Aravinthan, T. (2017), "Effect of beam orientation on the static behaviour of phenolic core sandwich composites with different shear span-to-depth ratios", Compos. Struct., 168, 292-304. https://doi.org/10.1016/j.compstruct.2017.02.061.
- Fotsing, E.A., Leclerc, C., Sola, M., Ross, A. and Ruiz, E. (2016), "Mechanical properties of composite sandwich structures with core or face sheet discontinuities", Compos. Part B Eng., 88, 229-239. https://doi.org/10.1016/j.compositesb.2015.10.037.
- Fotsing, E.A., Leclerc, C., Sola, M., Ross, A. and Ruiz, E. (2008), "Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending", Eng. Fail. Anal., 15(5), 555-562. https://doi.org/10.1016/j.engfailanal.2007.04.004.
- Gdoutos, E.E. and Daniel, I.M. (2008), "Failure Modes of Composite Sandwich Beams." Theor. Appl. Mech.,35(1-3), 105-18. https://doi.org/10.2298/TAM0803105G.
- He, M. and Hu, W., (2008). "A study on composite honeycomb sandwich panel structure", Mater. Des., 29(3), 709-713. https://doi.org/10.1016/j.matdes.2007.03.003.
- Ivanez, I. and Sanchez-Saez, S. (2013), "Numerical modelling of the low-velocity impact response of composite sandwich Beams with honeycomb core", Compos. Struct., 106, 716-723. https://doi.org/10.1016/j.compstruct.2013.07.025.
- Kueh, A.B.H. (2012), "Fitting-free hyperelastic strain energy formulation for triaxial weave fabric composites", Mech. Mater., 47, 11-23. https://doi.org/10.1016/j.mechmat.2012.01.001.
- Kueh, A.B.H. (2014), "Size-influenced mechanical isotropy of singly-plied triaxially woven fabric composites", Compos. Part A Appl. Sci. Manuf., 57, 76-87. https://doi.org/10.1016/j.compositesa.2013.11.005.
- Lingaiah, K. and Suryanarayana, B.G. (1991), "Strength and stiffness of sandwich beams in bending", Exp. Mech., 31(1), 1-7. https://doi.org/10.1007/BF02325715.
- Lu, C., Zhao, M., Jie, L., Wang, J., Gao, Y., Cui, X. and Chen, P. (2015), "Stress distribution on composite honeycomb sandwich structure suffered from bending load", Procedia Eng., 99, 405-12. https://doi.org/10.1016/j.proeng.2014.12.554.
- Manalo, A.C., Aravinthan, T., Karunasena, W. and Islam, M.M. (2010), "Flexural behaviour of structural fibre composite sandwich beams in flatwise and edgewise positions", Compos. Struct., 92(4), 984-995. https://doi.org/10.1016/j.compstruct.2009.09.046.
- Mines, R.A.W., Worrall, C.M. and Gibson, A.G. (1994), "The static and impact behaviour of polymer composite sandwich beams", Composites., 25(2), 95-110. https://doi.org/10.1016/0010-4361(94)90003-5.
- Russo, A. and Zuccarello, B. (2007), "Experimental and numerical evaluation of the mechanical behaviour of GFRP sandwich panels", Compos. Struct., 81(4), 575-586. https://doi.org/10.1016/j.compstruct.2006.10.007.
- Selver, E. and Kaya, G. (2019), "Flexural properties of sandwich composite laminates reinforced with glass and carbon Z-pins", J. Compos. Mater., 53(10), 1347-1359. https://doi.org/10.1177/0021998318800146.
- Shenhar, Y., Frostig, Y. and Altus, E. (1996), "Stresses and failure patterns in the bending of sandwich beams with transversely flexible cores and laminated composite skins", Compos. Struct., 35(2), 143-152. https://doi.org/10.1016/0263-8223(96)00016-5.
- Tekalur, S.A., Bogdanovich, A.E. and Shukla, A. (2009), "Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core", Compos. Sci. Technol., 69(6), 736-753. https://doi.org/10.1016/j.compscitech.2008.03.017.
- Wang, J., Shi, C., Yang, N., Sun, H., Liu, Y. and Song, B., (2018), "Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body", Compos. Struct., 184, 1189-1196. https://doi.org/10.1016/j.compstruct.2017.10.038.
- Xu, D., Ganesan, R. and Hoa, S.V. (2007), "Buckling analysis of tri-axial woven fabric composite structures subjected to bi-axial loading", Compos. Struct., 78(1), 140-152. https://doi.org/10.1016/j.compstruct.2005.08.021.
- Xu, D., Ganesan, R. and Hoa, S.V. (2005), "Buckling analysis of tri-axial woven fabric composite structures. Part I: non-linear finite element formulation", Compos. Struct., 67(1), 37-55. https://doi.org/10.1016/j.compstruct.2004.01.004.
- Zhao, Q.I. and Hoa, S.V. (2003), "Thermal deformation behavior of triaxial woven fabric (TWF) composites with open holes", J. Compos. Mater., 37(18), 1629-1649. https://doi.org/10.1177/0021998303035192.