• 제목/요약/키워드: Wound migration

검색결과 275건 처리시간 0.032초

Role of Non-Thermal DBD Plasma on Cell Migration and Cell Proliferation in Wound Healing

  • Ali, Anser;Lee, Seung Hyun;Kim, Yong Hee;Uhm, Han Sup;Choi, Eun Ha;Park, Bong Joo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.526-526
    • /
    • 2013
  • Plasma technology isbeing developed for a range of medical applications including wound healing. However, the effect of plasma on many cells and tissues is unclear. Cell migration and cell proliferation are very important biological processes which are affected by plasma exposure and might be a potential target for plasma therapy during wound healing treatment. In this study, we confirmed the plasma exposure time and incubation time after plasma treatment in skin fibroblast (L-929 cells) to evaluate the optimal conditions forplasma exposure to the cell in-vitro. In addition, we used a scratch method to generate artificial wound for evaluating the cell migration by plasma treatment. Where, the cells were treated with plasma and migration rate was observed by live-cell imaging device. To find the cell proliferation, cell viability assay was executed. The results of this study indicate the increased cell proliferation and migration on mild plasma treatment. The mechanisms for cell migration and cell proliferation after plasma treatment for future studies will be discussed.

  • PDF

세포 이동능력 분석을 위한 96-Well Plate 전용 Lab-Made Wound Maker (A Lab-Made Wound Maker for Analysis of Cell Migration in a 96-Well Plate)

  • 이태복;김화룡;박서영
    • 대한임상검사과학회지
    • /
    • 제52권1호
    • /
    • pp.53-61
    • /
    • 2020
  • Cell migration은 embryogenesis 혹은 cancer metastasis 이외에, 물리적 손상에 의한 상처의 수복을 위해서 손상된 부위로 세포가 이동하는 매우 흔하게 관찰되는 현상 중 하나 이다. Wound healing assay는 in vitro의 이차원 평면상에서 세포의 이동을 관찰할 수 있는 기본적인 연구 기법이다. In vitro상에서 물리적 손상을 재현하는 가장 손쉬운 접근법으로서, 세포의 confluent monolayer 표면에 날카로운 도구를 이용하여 기계적인 스크레치를 내는 방법이 사용되고 있다. 완충 스프링이 탑재된 금속 핀을 96-well plate를 기반으로 하는 wound maker에 장착하여 multi-well plate 바닥 표면의 고르지 못한 굴곡과 스크레칭 팁 사이에 직각을 이루는 접촉면에서의 미세한 조절이 가능하도록 하였다. 실험용 팁으로 confluent monolayer위에 스크래치를 내었을 때에는 다양한 지그재그 패턴이 그려진 반면에, 직접 제작한 wound maker에서는 동일한 형태의 선형 wounds가 fibroblast가 seeding된 96-well plate의 각 well의 중심부에 그려짐을 확인하였다. 상용화 되어있는 몇몇 multi-well plate가 본 실험에서 제작된 wound maker와 호환되는 것을 고려하여 보았을 때에, 실시간 wound healing을 관찰하는 high content screening (HCS)실험에 있어서의 활용적인 측면에서 기존의 전형적인 polypropylene 파이펫 팁을 이용한 스크래칭 방법보다 더욱 용이한 방법임을 알 수 있다.

세포 운동 가시화를 통한 상처 치유 과정 내 경계 이동의 규명 (Identification of boundary migration during the wound healing through the visualization of cell migrations)

  • 정현태;이재성;신현정
    • 한국가시화정보학회지
    • /
    • 제18권2호
    • /
    • pp.10-17
    • /
    • 2020
  • The curvature of wound boundaries has been identified as a key modulator that determines a type of force responsible for cell migration. While several studies report how certain curvatures of the boundary correlate with the rate at which the wound closes, it remains unclear how these curvatures are spatiotemporally formed to regulate the healing process. We investigated the dynamic changes in the boundary curvatures by visualizing cell migration patterns. Locally, cells at the convex boundary continuously move forward with transmitting kinetic responses behind to the cells away from the boundary, and cells at the concave boundary exhibit dramatic contracting motion, like a purse-string, when they accumulate enough negative curvatures to gain the thrust toward the void. Globally, the dynamics of boundary geometries are controlled by the diffusive flow of cells driven by the density gradient between the wound area and the cell layer.

Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition

  • Ritto, Dakanda;Tanasawet, Supita;Singkhorn, Sawana;Klaypradit, Wanwimol;Hutamekalin, Pilaiwanwadee;Tipmanee, Varomyalin;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • 제11권4호
    • /
    • pp.275-280
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Re-epithelialization has an important role in skin wound healing. Astaxanthin (ASX), a carotenoid found in crustaceans including shrimp, crab, and salmon, has been widely used for skin protection. Therefore, we investigated the effects of ASX on proliferation and migration of human skin keratinocyte cells and explored the mechanism associated with that migration. MATERIAL/METHOD: HaCaT keratinocyte cells were exposed to $0.25-1{\mu}g/mL$ of ASX. Proliferation of keratinocytes was analyzed by using MTT assays and flow cytometry. Keratinocyte migration was determined by using a scratch wound-healing assay. A mechanism for regulation of migration was explored via immunocytochemistry and western blot analysis. RESULTS: Our results suggest that ASX produces no significant toxicity in human keratinocyte cells. Cell-cycle analysis on ASX-treated keratinocytes demonstrated a significant increase in keratinocyte cell proliferation at the S phase. In addition, ASX increased keratinocyte motility across the wound space in a time-dependent manner. The mechanism by which ASX increased keratinocyte migration was associated with induction of filopodia and formation of lamellipodia, as well as with increased Cdc42 and Rac1 activation and decreased RhoA activation. CONCLUSIONS: ASX stimulates the migration of keratinocytes through Cdc42, Rac1 activation and RhoA inhibition. ASX has a positive role in the re-epithelialization of wounds. Our results may encourage further in vivo and clinical study into the development of ASX as a potential agent for wound repair.

각질형성세포와 섬유모세포 활성화에 미치는 대풍자 부탄올 분획의 효능 (The Effect of the Butanol Fraction from Hydnocarpi Semen Extract on Activation of Keratinocyte and Fibroblast)

  • 이금선;이기만;임동술;정재훈;강태진
    • 생약학회지
    • /
    • 제46권1호
    • /
    • pp.59-64
    • /
    • 2015
  • Wound healing is a complex process that includes inflammation, granulation tissue formation, re-epithelialization, and remodeling. We reported previously that BuOH fraction from Hydnocarpi Semen (HS) crude extract exhibited wound healing activity in animal ulcer models. In this study, we investigated whether BuOH fraction activates keratinocyte and fibroblast via wound closure test and migration assay. In the scratch test, BuOH fraction accelerated the closure of a monolayer wound scratch at $100{\mu}g/mL$. After treatment with BuOH fraction for 18 h, keratinocytes showed a increase in migration at $25{\mu}g/mL$, whereas the migration of fibroblast increased significantly at $100{\mu}g/mL$ of BuOH fraction compared to control. The mechanism that the BuOH fraction of HS helps to promote healing by inflammation is possibly associated with the migration of keratinocyte and fibroblast.

Royal jelly enhances migration of human dermal fibroblasts and alters the levels of cholesterol and sphinganine in an in vitro wound healing model

  • Kim, Ju-Young;Kim, Young-Ae;Yun, Hye-Jeong;Park, Hye-Min;Kim, Sun-Yeou;Lee, Kwang-Gill;Han, Sang-Mi;Cho, Yun-Hi
    • Nutrition Research and Practice
    • /
    • 제4권5호
    • /
    • pp.362-368
    • /
    • 2010
  • Oral administration of royal jelly (RJ) promotes wound healing in diabetic mice. Concerns have arisen regarding the efficacy of RJ on the wound healing process of normal skin cells. In this study, a wound was created by scratching normal human dermal fibroblasts, one of the major cells involved in the wound healing process. The area was promptly treated with RJ at varying concentrations of 0.1, 1.0, or 5 mg/ml for up to 48 hrs and migration was analyzed by evaluating closure of the wound margins. Furthermore, altered levels of lipids, which were recently reported to participate in the wound healing process, were analyzed by HPTLC and HPLC. Migration of fibroblasts peaked at 24 hrs after wounding. RJ treatment significantly accelerated the migration of fibroblasts in a dose-dependent manner at 8 hrs. Although RJ also accelerated the migration of fibroblasts at both 20 hrs and 24 hrs after wounding, the efficacy was less potent than at 8 hrs. Among various lipid classes within fibroblasts, the level of cholesterol was significantly decreased at 8 hrs following administration of both 0.1 ug/ml and 5 mg/ml RJ. Despite a dose-dependent increase in sphinganines, the levels of sphingosines, ceramides, and glucosylceramides were not altered with any concentration of RJ. We demonstrated that RJ enhances the migration of fibroblasts and alters the levels of various lipids involved in the wound healing process.

Nanosphere Form of Curcumin Stimulates the Migration of Human Umbilical Cord Blood Derived Mesenchymal Stem Cells

  • Kim, Do-Wan;Kim, Ju Ha;Lee, Sei-Jung
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2020년도 정기학술대회 발표논문집
    • /
    • pp.221-221
    • /
    • 2020
  • Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases. In the present study, we found the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) during the wound closure. We found that the efficacy of hUCB-MSCs migration induced by CN was 1000-fold higher than that of curcumin powder. CN significantly increased the motility of hUCB-MSCs by activating c-Src, which is responsible for the phosphorylation of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). CN induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhances wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair.

  • PDF

Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing

  • Song Yang;Shuyan Lu;Limei Ren;Shuai Bian;Daqing Zhao;Meichen Liu;Jiawen Wang
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.133-143
    • /
    • 2023
  • Background: Past studies suggested that ginseng extracts and ginseng-derived molecules exerted significant regulatory effects on skin. However, no reports have described the effects of ginseng-derived nanoparticles (GDNPs) on skin cell proliferation and wound healing. In this study, we investigated whether GDNPs regulate the proliferation of skin cells and promote wound healing in a mouse model. Methods: GDNPs were separated and purified via differential centrifugation and sucrose/D2O gradient ultracentrifugation. GDNP uptake, cell proliferation and cell cycle progression were measured by confocal microscopy, CCK-8 assay and flow cytometry, respectively. Cell migration and angiogenic effects were assessed by the wound scratch assay and tube formation assay, respectively. ELISA was used to detect extracellular matrix secretion. The relevant signaling pathway was confirmed by western blotting. The effects of GDNPs on skin wound healing were assessed by wound observation, HE staining, and western blotting. Results: GDNPs possessed the essential features of exosomes, and they were accumulated by skin cells. Treatment with GDNPs notably enhanced the proliferation of HaCaT, BJ and HUVECs. GDNPs also enhanced the migration in HaCaT cells and HUVECs and angiogenesis in HUVECs. GDNPs increased the secretion of MMP-1, fibronectin-1, elastin-1, and COL1A1 in all three cell lines. GDNPs regulated cell proliferation through the ERK and AKT/ mTOR pathways. Furthermore, GDNPs facilitated skin wound healing and decreased inflammation in a mouse skin wound model. Conclusion: GDNPs can promote skin wound healing through the ERK and AKT/mTOR pathways. GDNPs thus represent an alternative treatment for chronic skin wounds.

Skin Wound Healing Effects and Action Mechanism of Acai Berry Water Extracts

  • Kang, Mi Hyun;Choi, Seunghye;Kim, Bae-Hwan
    • Toxicological Research
    • /
    • 제33권2호
    • /
    • pp.149-156
    • /
    • 2017
  • The purpose of this study was to investigate the wound healing effect of acai berry water extracts (ABWE) and a possible underlying mechanism involved in its action using various in vitro and in vivo models. The wound healing effect of ABWE was evaluated by migration assay using HS68 fibroblast cells. In addition, its effect on mRNA expression of procollagen, fibronectin, and MMP-1 was determined. Moreover, the wound healing effect of ABWE was evaluated in in vivo wound models through macroscopic and microscopic observation. In addition, mRNA expression levels of wound related genes were determined. Results revealed that ABWE was not cytotoxic. It increased migration of HS68 fibroblast cells. ABWE increased mRNA expression levels of fibronectin but decreased the mRNA expression levels of MMP-1. ABWE also showed significantly potent wound healing effect in vivo based on macroscopic and histopathological observation and mRNA expression evaluation for wound related genes. Taken together, our results indicated that ABWE might have potential as a wound healing agent.

Effects of TESTIN Gene Expression on Proliferation and Migration of the 5-8F Nasopharyngeal Carcinoma Cell Line

  • Zhong, Zhun;Zhang, Fei;Yin, Shu-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2555-2559
    • /
    • 2015
  • Purpose: To investigate effects of the TESTIN (TES) gene on proliferation and migration of highly metastatic nasopharyngeal carcinoma cell line 5-8F and the related mechanisms. Materials and Methods: The target gene of human nasopharyngeal carcinoma cell line 5-8F was amplified by PCR and cloned into the empty plasmid pEGFP-N1 to construct a eukaryotic expression vector pEGFP-N1-TES. This was then transfected into 5-8F cells. MTT assays, flow cytometry and scratch wound tests were used to detect the proliferation and migration of transfected 5-8F cells. Results: A cell model with stable and high expression of TES gene was successfully established. MTT assays showed that the OD value of 5-8F/TES cells was markedly lower than that of 5-8F/GFP cells and 5-8F cells (p<0.05). Flow cytometry showed that the apoptosis rate of 5-8F/TES cells was prominently increased compared with 5-8F/GFP cells and 5-8F cells (p<0.05). In vitro scratch wound assays showed that, the width of the wound area of 5-8F/TES cells narrowed slightly, while the width of the wound area of 5-8F/ GFP cells and 5-8F cells narrowed sharply, suggesting that the TES overexpression could inhibit the migration ability. Conclusions: TES gene expression remarkably inhibits the proliferation of human nasopharyngeal carcinoma cell line 5-8F and reduces its migration in vitro. Thus, it may be a potential tumor suppressor gene for nasopharyngeal carcinoma.