DOI QR코드

DOI QR Code

Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing

  • Song, Yang (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Shuyan, Lu (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Limei, Ren (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Shuai, Bian (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Daqing, Zhao (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Meichen, Liu (Jilin Ginseng Academy, Changchun University of Chinese Medicine) ;
  • Jiawen, Wang (Jilin Ginseng Academy, Changchun University of Chinese Medicine)
  • Received : 2022.01.19
  • Accepted : 2022.07.19
  • Published : 2023.01.02

Abstract

Background: Past studies suggested that ginseng extracts and ginseng-derived molecules exerted significant regulatory effects on skin. However, no reports have described the effects of ginseng-derived nanoparticles (GDNPs) on skin cell proliferation and wound healing. In this study, we investigated whether GDNPs regulate the proliferation of skin cells and promote wound healing in a mouse model. Methods: GDNPs were separated and purified via differential centrifugation and sucrose/D2O gradient ultracentrifugation. GDNP uptake, cell proliferation and cell cycle progression were measured by confocal microscopy, CCK-8 assay and flow cytometry, respectively. Cell migration and angiogenic effects were assessed by the wound scratch assay and tube formation assay, respectively. ELISA was used to detect extracellular matrix secretion. The relevant signaling pathway was confirmed by western blotting. The effects of GDNPs on skin wound healing were assessed by wound observation, HE staining, and western blotting. Results: GDNPs possessed the essential features of exosomes, and they were accumulated by skin cells. Treatment with GDNPs notably enhanced the proliferation of HaCaT, BJ and HUVECs. GDNPs also enhanced the migration in HaCaT cells and HUVECs and angiogenesis in HUVECs. GDNPs increased the secretion of MMP-1, fibronectin-1, elastin-1, and COL1A1 in all three cell lines. GDNPs regulated cell proliferation through the ERK and AKT/ mTOR pathways. Furthermore, GDNPs facilitated skin wound healing and decreased inflammation in a mouse skin wound model. Conclusion: GDNPs can promote skin wound healing through the ERK and AKT/mTOR pathways. GDNPs thus represent an alternative treatment for chronic skin wounds.

Keywords

Acknowledgement

This work was supported by the Technology Development Fund-Jilin Provincial Special project for Basic Research, China (202002054JC), National Natural Science Foundation of China (U19A2013) and the Science and Technology Project of Jilin Provincial Education Department (JJKH20220875KJ).

References

  1. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES, Lindenberg JL, de Gruijl TD, Wurdinger T, Middeldorp JM. Functional delivery of viral mirnas via exosomes. Proc Natl Acad Sci U S A 2010;107:6328-33.  https://doi.org/10.1073/pnas.0914843107
  2. Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G. Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 2004;101:9683-8.  https://doi.org/10.1073/pnas.0308413101
  3. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002;2:569-79.  https://doi.org/10.1038/nri855
  4. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014;14:195-208.  https://doi.org/10.1038/nri3622
  5. Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends in Cell Biology 2017;27:172-88.  https://doi.org/10.1016/j.tcb.2016.11.003
  6. Riazifar M, Pone EJ, Lotvall J, Zhao W. Stem cell extracellular vesicles:extended messages of regeneration. Annu Rev Pharmacol Toxicol 2017;57:125-54.  https://doi.org/10.1146/annurev-pharmtox-061616-030146
  7. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for ctl cross-priming. Nat Med 2001;7:297-303.  https://doi.org/10.1038/85438
  8. Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 2016;4:-1134415.  https://doi.org/10.1080/21688370.2015.1134415
  9. Rome S. Biological properties of plant-derived extracellular vesicles. Food Funct 2019;10:529-38.  https://doi.org/10.1039/c8fo02295j
  10. Cui Y, Gao J, He Y, Jiang L. Plant extracellular vesicles. Protoplasma 2020;257:3-12.  https://doi.org/10.1007/s00709-019-01435-6
  11. Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell amp-activated protein kinase. Molecular Therapy : The Journal of the American Society of Gene Therapy 2017;25:1641-54.  https://doi.org/10.1016/j.ymthe.2017.01.025
  12. Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from dss-induced colitis. Mol Ther 2013;21:1345-57.  https://doi.org/10.1038/mt.2013.64
  13. Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, Feng W, McClain CJ, Zhang HG. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015;4:28713.  https://doi.org/10.3402/jev.v4.28713
  14. Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, Zhang L, Kakar S, Jun Y, Miller D, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res 2014;58:1561-73.  https://doi.org/10.1002/mnfr.201300729
  15. Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J, Deng Z, Luo C, et al. Plant-derived exosomal micrornas shape the gut microbiota. Cell Host Microbe 2018;24:637-652 -638.  https://doi.org/10.1016/j.chom.2018.10.001
  16. Cao M, Yan H, Han X, Weng L, Wei Q, Sun X, Lu W, Wei Q, Ye J, Cai X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer 2019;7:326.  https://doi.org/10.1186/s40425-019-0817-4
  17. Sahin F, Kocak P, Gunes MY, Ozkan I, Yildirim E, Kala EY. In vitro wound healing activity of wheat-derived nanovesicles. Appl Biochem Biotechnol 2019;188:381-94.  https://doi.org/10.1007/s12010-018-2913-1
  18. Teng Y, Mu J, Hu X, Samykutty A, Zhuang X, Deng Z, Zhang L, Cao P, Yan J, Miller D, et al. Grapefruit-derived nanovectors deliver mir-18a for treatment of liver metastasis of colon cancer by induction of m1 macrophages. Oncotarget 2016;7:25683-97.  https://doi.org/10.18632/oncotarget.8361
  19. Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L, Xiang X, Wang B, Yan J, Miller D, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun 2013;4:1867.  https://doi.org/10.1038/ncomms2886
  20. Diaz-Garcia D, Filipova A, Garza-Veloz I, Martinez-Fierro ML. A beginner's introduction to skin stem cells and wound healing. Int J Mol Sci 2021:22. 
  21. Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care (New Rochelle) 2019;8:39-48.  https://doi.org/10.1089/wound.2019.0946
  22. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008;453:314-21.  https://doi.org/10.1038/nature07039
  23. Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol 2020;10:200223.  https://doi.org/10.1098/rsob.200223
  24. Shaw TJ, Martin P. Wound repair. A showcase for cell plasticity and migration. Curr Opin Cell Biol 2016;42:29-37.  https://doi.org/10.1016/j.ceb.2016.04.001
  25. Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem 2016 Feb 15;109:314-41.  https://doi.org/10.1016/j.ejmech.2016.01.012
  26. Panax ginseng. Monograph. Altern Med Rev 2009;14:172-6. 
  27. Ahn H, Han BC, Hong EJ, An BS, Lee E, Lee SH, Lee GS. Korean red ginseng attenuates ultraviolet-mediated inflammasome activation in keratinocytes. J Ginseng Res 2021;45:456-63.  https://doi.org/10.1016/j.jgr.2021.02.002
  28. Shin KO, Choe SJ, Uchida Y, Kim I, Jeong Y, Park K. Ginsenoside rb1 enhances keratinocyte migration by a sphingosine-1-phosphate-dependent mechanism. J Med Food 2018;21:1129-36.  https://doi.org/10.1089/jmf.2018.4246
  29. Lee GY, Park KG, Namgoong S, Han SK, Jeong SH, Dhong ES, Kim WK. Effects of panax ginseng extract on human dermal fibroblast proliferation and collagen synthesis. Int Wound J 2016;13(Suppl 1):42-6.  https://doi.org/10.1111/iwj.12530
  30. Cho EG, Choi SY, Kim H, Choi EJ, Lee EJ, Park PJ, Ko J, Kim KP, Baek HS. Panax ginseng-derived extracellular vesicles facilitate anti-senescence effects in human skin cells: an eco-friendly and sustainable way to use ginseng substances. Cells 2021:10. 
  31. Pettersson J, Lobov S, Novikova LN. Labeling of olfactory ensheathing glial cells with fluorescent tracers for neurotransplantation. Brain Res Bull 2010 Jan 15;81(1):125-32.  https://doi.org/10.1016/j.brainresbull.2009.10.005
  32. Kaiser JP, Bruinink A. Investigating cell-material interactions by monitoring and analysing cell migration. J Mater Sci Mater Med 2004 Apr;15(4):429-35.  https://doi.org/10.1023/B:JMSM.0000021115.55254.a8
  33. Kim S, Lee SK, Kim H, Kim TM. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. Int J Mol Sci 2018;19. 
  34. Tutuianu R, Rosca AM, Iacomi DM, Simionescu M, Titorencu I. Human mesenchymal stromal cell-derived exosomes promote in vitro wound healing by modulating the biological properties of skin keratinocytes and fibroblasts and stimulating angiogenesis. Int J Mol Sci 2021:22. 
  35. Sjoqvist S, Ishikawa T, Shimura D, Kasai Y, Imafuku A, Bou-Ghannam S, Iwata T, Kanai N. Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing. J Extracell Vesicles 2019;8:1565264.  https://doi.org/10.1080/20013078.2019.1565264
  36. Go YY, Lee CM, Ju WM, Chae SW, Song JJ. Extracellular vesicles (secretomes) from human trophoblasts promote the regeneration of skin fibroblasts. Int J Mol Sci 2021:22. 
  37. Yu YJ, Xu YY, Lan XO, Liu XY, Zhang XL, Gao XH, Geng L. Shikonin induces apoptosis and suppresses growth in keratinocytes via CEBP-δ upregulation. Int Immunopharmacol 2019 Jul;72:511-21.  https://doi.org/10.1016/j.intimp.2019.04.047
  38. Qing C. The molecular biology in wound healing & non-healing wound. Chin J Traumatol 2017;20:189-93.  https://doi.org/10.1016/j.cjtee.2017.06.001
  39. Saxton RA, Sabatini DM. Mtor signaling in growth, metabolism, and disease. Cell 2017;168:960-76.  https://doi.org/10.1016/j.cell.2017.02.004
  40. Huang H, Cui W, Qiu W, Zhu M, Zhao R, Zeng D, Dong C, Wang X, Guo W, Xing W, et al. Impaired wound healing results from the dysfunction of the akt/ mtor pathway in diabetic rats. J Dermatol Sci 2015;79:241-51.  https://doi.org/10.1016/j.jdermsci.2015.06.002
  41. Li B, Tang H, Bian X, Ma K, Chang J, Fu X, Zhang C. Calcium silicate accelerates cutaneous wound healing with enhanced re-epithelialization through egf/ egfr/erk-mediated promotion of epidermal stem cell functions. Burns Trauma 2021;9:tkab029.  https://doi.org/10.1093/burnst/tkab029
  42. Lu CC, Yang JS, Chiu YJ, Tsai FJ, Hsu YM, Yin MC, Juan YN, Ho TJ, Chen HP. Dracorhodin perchlorate enhances wound healing via beta-catenin, erk/p38, and akt signaling in human hacat keratinocytes. Exp Ther Med 2021;22:822.  https://doi.org/10.3892/etm.2021.10254
  43. Zhao Y, Wang X, Yang S, Song X, Sun N, Chen C, Zhang Y, Yao D, Huang J, Wang J, et al. Kanglexin accelerates diabetic wound healing by promoting angiogenesis via fgfr1/erk signaling. Biomed Pharmacother 2020;132:110933.  https://doi.org/10.1016/j.biopha.2020.110933
  44. Remnant L, Kochanova NY, Reid C, Cisneros-Soberanis F, Earnshaw WC. The intrinsically disorderly story of ki-67. Open Biol 2021;11:210120.  https://doi.org/10.1098/rsob.210120
  45. Kiritsi D, Nystrom A. The role of tgfbeta in wound healing pathologies. Mech Ageing Dev 2018;172:51-8.  https://doi.org/10.1016/j.mad.2017.11.004
  46. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140:805-20.  https://doi.org/10.1016/j.cell.2010.01.022
  47. Aitcheson SM, Frentiu FD, Hurn SE, Edwards K, Murray RZ. Skin wound healing: normal macrophage function and macrophage dysfunction in diabetic wounds. Molecules 2021;26. 
  48. Guo W, Qiu W, Ao X, Li W, He X, Ao L, Hu X, Li Z, Zhu M, Luo D, et al. Lowconcentration dmso accelerates skin wound healing by akt/mtor-mediated cell proliferation and migration in diabetic mice. Br J Pharmacol 2020;177:3327-41. S. Yang, S. Lu, L. Ren et al. Journal of Ginseng Research 47 (2023) 133-143 
  49. Hauck S, Zager P, Halfter N, Wandel E, Torregrossa M, Kakpenova A, Rother S, Ordieres M, Rathel S, Berg A, et al. Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioact Mater 2021;6:4342-59.  https://doi.org/10.1016/j.bioactmat.2021.04.026
  50. Wei P, Zhong C, Yang X, Shu F, Xiao S, Gong T, Luo P, Li L, Chen Z, Zheng Y, et al. Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via pi3k-akt-mtor-mediated promotion in angiogenesis and fibroblast function. Burns Trauma 2020;8:tkaa020.  https://doi.org/10.1093/burnst/tkaa020
  51. Park GH, Park KY, Cho HI, Lee SM, Han JS, Won CH, Chang SE, Lee MW, Choi JH, Moon KC, et al. Red ginseng extract promotes the hair growth in cultured human hair follicles. J Med Food 2015 Mar;18(3):354-62.  https://doi.org/10.1089/jmf.2013.3031
  52. Truong VL, Jeong WS. Hair growth-promoting mechanisms of red ginseng extract through stimulating dermal papilla cell proliferation and enhancing skin health. Prev Nutr Food Sci 2021 Sep 30;26(3):275-84. https://doi.org/10.3746/pnf.2021.26.3.275