• Title/Summary/Keyword: Wound contraction

Search Result 62, Processing Time 0.025 seconds

Wound Healing and Diuretic Activities of Canthium parviflorum Lam

  • Mohideen, S.;Ilavarasan, R.;Hemalatha, S.;Anitha, N.;Sasikala, E.
    • Natural Product Sciences
    • /
    • v.9 no.2
    • /
    • pp.102-104
    • /
    • 2003
  • Aqueous and ethanolic extract of leaves of Canthium parviflorum were evaluated for wound healing and diuretic activities. Extract in the form of ointment is applied topically on excision wound in rats showed significant healing process as evidenced by increased rate of wound contraction as compared to control. The aqueous extract of 10% w/w ointment exhibited equivalent wound healing activity as Nitrofurazone oinment. Significant diuretic activity was exhibited by extracts. Graded dose response for both activities were observed for the extracts.

Local Silencing of Connective Tissue Growth Factor by siRNA/Peptide Improves Dermal Collagen Arrangements

  • Cho Lee, Ae-Ri;Woo, Inhae
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.711-719
    • /
    • 2018
  • BACKGROUND: Collagen organization within tissues has a critical role in wound regeneration. Collagen fibril diameter, arrangements and maturity between connective tissue growth factor (CTGF) small interfering RNA (siRNA) and mismatch scrambled siRNA-treated wound were compared to evaluate the efficacy of CTGF siRNA as a future implement for scar preventive medicine. METHODS: Nanocomplexes of CTGF small interfering RNA (CTGF siRNA) with cell penetrating peptides (KALA and $MPG^{{\Delta}NLS}$) were formulated and their effects on CTGF downregulation, collagen fibril diameter and arrangement were investigated. Various ratios of CTGF siRNA and peptide complexes were prepared and down-regulation were evaluated by immunoblot analysis. Control and CTGF siRNA modified cells-populated collagen lattices were prepared and rates of contraction measured. Collagen organization in rabbit ear 8 mm biopsy punch wound at 1 day to 8 wks post injury time were investigated by transmission electron microscopy and histology was investigated with Olympus System and TS-Auto software. CONCLUSION: CTGF expression was down-regulated to 40% of control by CTGF siRNA/KALA (1:24) complexes (p<0.01) and collagen lattice contraction was inhibited. However, down-regulated of CTGF by CTGF $siRNA/MPG^{{\Delta}NLS}$ complexes was not statistically significant. CTGF KALA-treated wound appeared with well formed-basket weave pattern of collagen fibrils with mean diameter of $128{\pm}22nm$ (n = 821). Mismatch siRNA/KALA-treated wound showed a high frequency of parallel small diameter fibrils (mean $90{\pm}20nm$, n = 563). CONCLUSION: Controlling over-expression of CTGF by peptide-mediated siRNA delivery could improve the collagen orientation and tissue remodeling in full thickness rabbit ear wound.

A Comparative Study of Hydrocolloid(Duoderm$\circledR$) and Hydrogel(Nu-Gel$\circledR$) Occlusive Dressing Materials in the Treatment of Full-Thickness Skin Wound in Dogs (개에서 전층피부 창상에 대한 Hydrocolloid(Duoderm$\circledR$)과 Hydrogel(Nu-Gel$\circledR$)의 치료 효과 비교 연구)

  • Kwon, Young-Sam;Rhee, Jung-Woo;Jang, Kwang-ho
    • Journal of Veterinary Clinics
    • /
    • v.20 no.3
    • /
    • pp.294-301
    • /
    • 2003
  • This study was performed to compare the effects of hydrocolloid(Duoderm$\circledR$, HC in this study) and hydrogel (Nu-Gel$\circledR$, HG in this study) occlusive dressing materials on degree of exudate, wound contraction, epithelialization, and healing of full-thickness skin wound in dogs. Three wounds measuring 2${\times}$2 cm in size were created bilaterally(6 wounds/dog) on the dorsolateral aspect of the trunk of 12 dogs. In each dog, the wounds were treated with HC, HG, and normal saline, respectively. For a 4 week period, the wounds were evaluated gross aspects and histopathological aspects. There were no statistically significant differences between treatment groups in percentage of wound contraction, percentage of epithelialization, and percentage of wound total healing during the first week. Significant differences were first detected on day 14. On day l4(P < 0.01) and 21 (P < 0.05), mean percentage of epithelialization of HG-treated wound was significantly greater than those in HC- and normal saline-treated wound. Mean percentage of wound contraction of HG-treated wound was significantly greater than that in HC- and control wounds on day 21(P< 0.05). On day 21, mean percentage of wound healing of HG-treated wound was significantly greater than that in HC- and control wounds(P < 0.02). On day 1, 4, and 7 after wound creation, although severe infiltration of PMN (polymorphonuclear leukocyte) cells in HC- and control wounds were observed in the subcutis and moderate infiltration of PMN cells in HG-treated wound were observed in the subcutis, we did not detect significant differences. On day 14 after wounding creation, in the wounds treated with HG dressing, epithelial cells were found over the surface, and edema further decreased in the tissue under the wounds, and the granulation tissue was replaced with collagen fibers. On day 21 after wound creation, in HG-treated wound compared with other experimental material-treated wounds, regenerated epidermis covered most of the wound surface, and the granulation tissue was more replaced with collagen fibers than that on day 14. Overall results indicated that the use of hydrogel dressing materials(Nu-Gel$\circledR$) as hydrocolloid dressing (Duoderm$\circledR$) materials and normal saline treatment on full-thickness skin wounds in dogs increased the rate of healing at repair stage.

Review of negative-pressure wound therapy (음압 창상 처치(Negative pressure wound therapy)에 대한 문헌적 고찰)

  • You, Ju Lee;Kang, Jae Kyoung
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2018
  • Advances in medical technology has enabled better management of complicated and chronic wounds. Negative-pressure wound therapy (NPWT) is a novel dressing technique that uses negative pressure to drain exudates and blood from wounds. NPWT increases local blood flow and promotes reduction of edema and wound healing and is suitable for a variety of wounds. It is associated with few adverse effects and shows excellent efficacy and cost-effectiveness. NPWT promotes rapid growth of granulation tissue and wound contraction; thus, it is more advantageous than general dressings as it reduces the size skin of grafts or flaps required for repair, and patients with chronic wounds can be treated as outpatients. We investigated the general usage and mechanism of NPWT, its clinical applications and adverse effects.

Design of Filament Wound Composite Tubes under Thermal Contraction (열수축을 하는 필라멘트 와인딩 복합재료 관의 설계)

  • 정태은;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2407-2417
    • /
    • 1993
  • Thermal deformations and stresses due to temperature changes are the serious problems in cryogenic structures such as the torque tube in a superconducting generator, In this paper, the equations of thermal expansion coefficients expressed only by material properties and winding angles are derived for the filament wound composite tubes. The experimental results of thermal contraction of CFRP tubes are compared with those from theoretical approach. Composite tubes with optimally regulated thermal expansion coefficient are designed on the basis of the study for the torque tube in the superconducting generator with temperature distributions varying from 300K to 4.2 K. The filament winding angle of composites resisting thermal stresses properly is sought by the finite element method using layered shell elements. The results show that the composite tubes designed for the requirements in cryogenic environments can effectively cope with the thermal stress problem.

Effects of Red Deer Antlers on Cutaneous Wound Healing in Full-thickness Rat Models

  • Gu, LiJuan;Mo, EunKyoung;Yang, ZhiHong;Fang, ZheMing;Sun, BaiShen;Wang, ChunYan;Zhu, XueMei;Bao, JianFeng;Sung, ChangKeun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.277-290
    • /
    • 2008
  • The process of wound repair involves an ordered sequence of events such as overlapping biochemical and cellular events that, in the best of circumstances, result in the restoration of both the structural and functional integrity of the damaged tissue. An important event during wound healing is the contraction of newly formed connective tissues by fibroblasts. The polypeptide growth factors, like transforming growth factor-${\beta}$(TGF-${\beta}$, insulin-like growth factor I (IGF- I) and epidermal growth factor (EGF), play very important mediator roles in the process of wound contraction. Deer antlers, as models of mammalian regeneration, are cranial appendages that develop after birth as extensions of a permanent protuberance (pedicle) on the frontal bone. Antlers contain various growth factors which stimulate dermal fibroblast growth. They are involved in digestion and respiration and are necessary for normal wound healing and skin health. In order to investigate and evaluate the effects of red deer antlers on skin wound site, the speed of full-thickness skin wound healing and the expression of IGF-I, TGF-${\beta}$ and EGF in skin wounds, three groups of skin full-thickness rat models with a high concentration of antler ointment, a low concentration of antler ointment and without antler ointment were compared. At post-injury days 0, 2, 4, 8, 16, 20, 32, 40 and 60, the skin wound area was measured, the expressions of IGF-I, TGF- ${\beta}$ and EGF mRNA were detected by reverse transcriptase polymerase chain reaction (RT-PCR) and collagen formation by sirius red dye and the localization of IGF-I, TGF-${\beta}$ and EGF peptides were inspected by histological immunohistochemical techniques. Wound healing was significantly more rapid in antler treated skins. In addition, the wound treated with a high concentration antler ointment, a low concentration antler ointment, and the control closed completely at post-injury day 40, day 44 and day 60, respectively. Via RT-PCR, the expressions of IGF-I (day 8 and day 16), TGF-${\beta}$(day 8, day 16 and day 20) and EGF (day 4, day 8, day 16, and day 32) were obviously up-regulated in high concentration antler-treated skins compared to control skins. Similar results could be seen in the histological detection of collagen dye and immunohistochemical methods using the corresponding polyclone antibodies of IGF-I, TGF-${\beta}$ and EGF. These results illustrate that antlers stimulate and accelerate the repair of cutaneous wounds.

A study on wound healing activity of Bacopa monnieri Linn. aerial parts

  • Ghosh, Tirtha;Maity, Tapan Kumar;Dash, Deepak Kumar;Boss, Anindya
    • Advances in Traditional Medicine
    • /
    • v.7 no.2
    • /
    • pp.150-156
    • /
    • 2007
  • Bacopa monnieri is being used in the traditional system of medicine for a variety of ailments. In the present study, the ethanolic extract of Bacopa monnieri aerial parts has been studied for its wound healing activity using various models in rats. Significant increase in wound contraction and skin breaking strength were observed in the excision and incision wound models respectively. There was also significant increase in hydroxyproline content, DNA content, superoxide dismutase activity, catalase activity, glutathione level and decrease in the level of thiobarbituric acid reactive substances in the $12^{th}$ day post wounding tissue of experimental rats in the ethanol extract treated groups with respect to the control group. The effect of the extract was found to be comparable with the standard drug nitrofurazone. From the results it may be concluded that the plant Bacopa monnieri is endowed with significant wound healing activity, thereby justifying its use in the traditional medicine. Saponins may be responsible for the observed wound healing activity.

An Developmental Study of Artificial Skin Using the Alginate Dermal Substrate: Preliminary Report (알지네이트 진피지지체 인공피부 개발: 예비보고)

  • Park, Dae Hwan;Shin, Jeong Im
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • Alginate, a polymer of guluronic and mannuronic acid, is used as a scaffolding material in biomedical applications. The research was to produce highly-purified alginate from seaweeds and to evaluate the efficacy of alginate as dermal substrate. Our alginate purification method showed a production rate as high as 25%. The purified alginate contained little polyphenol contents and endotoxin, proteins. For study of wound healing, full thickness skin defects were made on the dorsal area of the animal models. And then alginate, fibroblast-growth-factor mixed alginate, alginate-collagen complex, vaseline gauze as control were applied on the wound, respectively, and were evaluated grossly and histopathologically. For biocompatibility test, alginate and alginate-collagen complex discs were implanted on the back of Sprague-Dawly rats. Four weeks after implantation, the animals were examined immunologically against alginate and collagen. Alginate and FGF-mixed alginate, alginate-collagen complex group showed statistically higher percentage of wound contraction and wound healing than control group(p<0.05). Alginate-collagen complex group and FGF-mixed alginate group showed statistically higher percentage of wound healing than alginate group. The experiment of biocompatibility and immunologic reaction against impanted alginate or collagen needs more investigation. Highly-purified alginate from seaweeds by our purification method, showed the effect of wound healing, and addition of FGF or collagen increases the alginate's wound healing effect. It shows the possibility of alginate as a dermal substrate.

Possibility of Wound Dressing Using Poly(L-leucine)/poly(ethylene glycol)/poly(L-leucine) Triblock Copolymer

  • Kim, Hyeon-Jeong;Jo, Jong-Su
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.249-254
    • /
    • 1997
  • ABA-type block copolymers composed of poly(L-leucine)(PLL) as the A component and poly(ethylene glycol)(PEG) as the B component were synthesized by ring-opening polymerization of L-leucine N-carboxyanhydride initiated by primary amino group located at both ends of PEG chain. A silver sulfadiazine(AgSD)-impregnated wound dressing of sponge-type was prepared by the lyophilization method. Morphological structure of this wound dressing obtained by scanning electron microscopy(SEM) was composed of a dense skin layer and a macroporous inner sponge layer. Equilibrium water content(EWC) of wound dressing was above 10%. It increased with an increased of PEO content in the block copolymer due to the hydrophilicity of PEO. AgSD release from AgSD- impregnated wound dressing in PBS buffer(pH=7.4) was dependent on PEG composition in the block copolymer. Therefore, EWC and release of AgSD can be control by PEG composition. Antibacterial capacity of AgSD-impregnated wound dressing was examined in agar plate against Pseudmonas aeruginosa and Stapplococus aruous. Cytotoxicity of the wound dressing was evaluated by studing mouse skin fibroblast(L929). From the behavior of antimicrobial releasing and the investigation of the suppression of bacterial proliferation, it was supposed that the wound dressing containing antibiotics could protect the wound surfaces from bacterial invasion to suppress the bacterial proliferation effectively. In cytotoxicity observation, cellular damage was reduced by the control led released of AgSD from the LEL sponge matrix of AgSD-medicated wound dressing. In vivo test, granulous tissue formation and wound contraction or the AgSD and DHEA impregnated wound dressing were aster than any other groups.

  • PDF

Angiogenetic Effect of Onchung-Eum on Full-thickness Skin Wound in Rats (흰쥐의 전층피부손상에서 온청음(溫淸飮)이 신생혈관형성에 미치는 영향)

  • Kim, Bum-Hoi;Lee, Hae-Woong;Sohn, Nak-Won;Park, Dong-Il1
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.97-110
    • /
    • 2010
  • The wound healing process can be categorized as follows : inflammation, fibroplasia, neovascularization, collagen deposition, epithelialization, and wound contraction. During the healing process, various growth factors are secreted to accelerate wound healing. Previous studies have demonstrated that endogenous growth factors, such as vascular endothelial growth factor(VEGF) are the important regulatory polypeptides for coordinating the healing process. They are released from macrophages, fibroblasts, and keratinocytes at the site of injury and participate in the regulation of reepithelization, granulation tissue formation, collagen synthesis and neovascularization. Onchung-Um has been used clinically to treat various skin diseases. In addition, Onchung-Um has been also used for congestive inflammations. In the present study, we evaluated the effects of Onchung-Um on wound healing process and wound size reduction in rats. Full-thickness skin wounds ($15mm\;{\times}\;15mm$) were created on the back of rats. Rats were then divided into 2 groups : The Onchung-Um treated group that was orally administered with a dose of 193.9mg/100g of Onchung-Um extract per day for 15 days and Control group without Onchung-Um administration. Moreover, the histological changes and VEGF immunoexpressions of two groups were estimated. In results, wound closures were significantly accelerated by oral administration of Onchung-Um extract. Furthermore, in Onchung-Um treated group, there were significant increases in fibroblast migration, epithelialization compared with the Control group. VEGF expressions were also increased in Onchung-Um treated group. This study has therefore demonstrated the Onchung-Um can significantly improve the quality of wound healing and scar formation and the oral administration of Onchung-Um extract may increase early tissue angiogenesis in the incisional wound of an experimental animal model.