• Title/Summary/Keyword: Worst case

Search Result 793, Processing Time 0.028 seconds

Worst-Case Estimate of Envelope Correlation Coefficient for Small MIMO Mobile Antennas Below 1 GHz

  • Zhao, Xing;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.1
    • /
    • pp.44-52
    • /
    • 2015
  • A worst-case estimate of an envelope correlation coefficient (ECC) is obtained for small multiple-input multiple-output (MIMO) mobile antennas operating below 1 GHz. The worst-case estimate is numerically derived in this paper using spherical and exponential wave functions. The derived result confirms that the worst-case ECC can be easily obtained from the rotation angle between the radiation patterns of two MIMO elements, which are attained directly from the amplitude of 2D electric field patterns without any additional phase and polarization information. As a practical example, MIMO mobile antennas with different antenna element arrangements are compared to verify the validity of the proposed worst-case estimate. Moreover, based on these analyses, we also suggest an effective approach to reduce the ECC of a small MIMO mobile antenna operating below 1 GHz by properly locating the antenna elements to make the radiation patterns perpendicular to each other.

Robust Relay Design for Two-Way Multi-Antenna Relay Systems with Imperfect CSI

  • Wang, Chenyuan;Dong, Xiaodai;Shi, Yi
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.45-55
    • /
    • 2014
  • The paper investigates the problem of designing the multiple-antenna relay in a two-way relay network by taking into account the imperfect channel state information (CSI). The objective is to design the multiple-antenna relay based upon the CSI estimates, where the estimation errors are included to attain the robust design under the worst-case philosophy. In particular, the worst-case transmit power at the multiple-antenna relay is minimized while guaranteeing the worst-case quality of service requirements that the received signal-to-noise ratio (SNR) at both sources are above a prescribed threshold value. Since the worst-case received SNR expression is too complex for subsequent derivation and processing, its lower bound is explored instead by minimizing the numerator and maximizing the denominator of the worst-case SNR. The aforementioned problem is mathematically formulated and shown to be nonconvex. This motivates the pursuit of semidefinite relaxation coupled with a randomization technique to obtain computationally efficient high-quality approximate solutions. This paper has shown that the original optimization problem can be reformulated and then relaxed to a convex problem that can be solved by utilizing suitable randomization loop. Numerical results compare the proposed multiple-antenna relay with the existing nonrobust method, and therefore validate its robustness against the channel uncertainty. Finally, the feasibility of the proposed design and the associated influencing factors are discussed by means of extensive Monte Carlo simulations.

The Asymptotic Worst-Case Ratio of the Bin Packing Problem by Maximum Occupied Space Technique

  • Ongkunaruk, Pornthipa
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.126-132
    • /
    • 2008
  • The bin packing problem (BPP) is an NP-Complete Problem. The problem can be described as there are $N=\{1,2,{\cdots},n\}$ which is a set of item indices and $L=\{s1,s2,{\cdots},sn\}$ be a set of item sizes sj, where $0<sj{\leq}1$, ${\forall}j{\in}N$. The objective is to minimize the number of bins used for packing items in N into a bin such that the total size of items in a bin does not exceed the bin capacity. Assume that the bins have capacity equal to one. In the past, many researchers put on effort to find the heuristic algorithms instead of solving the problem to optimality. Then, the quality of solution may be measured by the asymptotic worst-case ratio or the average-case ratio. The First Fit Decreasing (FFD) is one of the algorithms that its asymptotic worst-case ratio equals to 11/9. Many researchers prove the asymptotic worst-case ratio by using the weighting function and the proof is in a lengthy format. In this study, we found an easier way to prove that the asymptotic worst-case ratio of the First Fit Decreasing (FFD) is not more than 11/9. The proof comes from two ideas which are the occupied space in a bin is more than the size of the item and the occupied space in the optimal solution is less than occupied space in the FFD solution. The occupied space is later called the weighting function. The objective is to determine the maximum occupied space of the heuristics by using integer programming. The maximum value is the key to the asymptotic worst-case ratio.

Multicore Real-Time Scheduling to Reduce Inter-Thread Cache Interferences

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.67-80
    • /
    • 2013
  • The worst-case execution time (WCET) of each real-time task in multicore processors with shared caches can be significantly affected by inter-thread cache interferences. The worst-case inter-thread cache interferences are dependent on how tasks are scheduled to run on different cores. Therefore, there is a circular dependence between real-time task scheduling, the worst-case inter-thread cache interferences, and WCET in multicore processors, which is not the case for single-core processors. To address this challenging problem, we present an offline real-time scheduling approach for multicore processors by considering the worst-case inter-thread interferences on shared L2 caches. Our scheduling approach uses a greedy heuristic to generate safe schedules while minimizing the worst-case inter-thread shared L2 cache interferences and WCET. The experimental results demonstrate that the proposed approach can reduce the utilization of the resulting schedule by about 12% on average compared to the cyclic multicore scheduling approaches in our theoretical model. Our evaluation indicates that the enhanced scheduling approach is more likely to generate feasible and safe schedules with stricter timing constraints in multicore real-time systems.

Worst case analysis of circulating type ropeway using optimal design technique (최적설계 기법을 이용한 순환식 삭도 선로의 최악조건 해석)

  • 최수진;신재균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.554-560
    • /
    • 1989
  • An optimal design technique is used as a systematic approach to analyze the worst case of a circulating type ropeway for a given geometry and operating conditions. Worst case is meant here the case when the positions and weights of the cars are so conditioned that the minimum of all the reaction forces between the main rope and the towers is minimum. In the course of this study, a general theory for the deflections and tensions of the main rope were also derived taking into account of the variation of the weights and positions of the individual cars. And through an analysis of example ropeways, some general conditions for the worst case are deduced.

Multicore-Aware Code Co-Positioning to Reduce WCET on Dual-Core Processors with Shared Instruction Caches

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.12-25
    • /
    • 2012
  • For real-time systems it is important to obtain the accurate worst-case execution time (WCET). Furthermore, how to improve the WCET of applications that run on multicore processors is both significant and challenging as the WCET can be largely affected by the possible inter-core interferences in shared resources such as the shared L2 cache. In order to solve this problem, we propose an innovative approach that adopts a code positioning method to reduce the inter-core L2 cache interferences between the different real-time threads that adaptively run in a multi-core processor by using different strategies. The worst-case-oriented strategy is designed to decrease the worst-case WCET among these threads to as low as possible. The other two strategies aim at reducing the WCET of each thread to almost equal percentage or amount. Our experiments indicate that the proposed multicore-aware code positioning approaches, not only improve the worst-case performance of the real-time threads but also make good tradeoffs between efficiency and fairness for threads that run on multicore platforms.

Worst Case Analysis of Tree Algorithm for Minimum Batch Cover Problem (단위작업 편성 문제의 Worst Case 분석)

  • Jang, Jun-Ho;Jang, Su-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.281-283
    • /
    • 2006
  • In this paper, we consider the problem of batch processing of orders, where either a single order or a pair of orders which satisfies specific conditions may be grouped in the same batch. The objective of the problem is to minimize the number of batches formed to accommodate all orders. We prose an approach based on a Known algorithm proven to be optimal for special class of problems with tree structure and show the approach to have the worst case ratio of $2-{\frac{2}{n}}$

  • PDF

Conditional Covering : Worst Case Analysis of Greedy Heuristics

  • Moon, I.Douglas
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.2
    • /
    • pp.97-104
    • /
    • 1990
  • The problem is a variation of the weighted set-covering problem (SCP) which requires the minimum-cost cover to be self-covering. It is shown that direct extension of the well-known greedy heuristic for SCP can have an arbitrarily large error in the worst case. It remains an open question whther these exists a greedy heuristic with a finite error bound.

  • PDF

An Analysis on Worst-case State Estimation in Standard H$\infty$ State-Space Solution

  • Choi, Youngjin;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.56-59
    • /
    • 1996
  • Worst-case state estimation will be proposed in this paper. By using the worst-case disturbance and worst-case state estimation, we can obtain right/left constrained coprime factors. If constrained coprime factors are used in designing a controller, the infinity-norm of closed-loop transfer matrix can be smaller than any constant .gamma.(> .gamma.$_{opt}$) without matrix dilation optimization. The derivation of left/right constrained coprime factors is achieved by doubly coprime factorization for the plant constrained by the infinity norm. And the parameterization of stabilizing controllers gives us easily understanding for H$_{\infty}$ control theory.ry.

  • PDF

Worst-case Delay Analysis of Time-Triggered 802.15.4 for Wireless Industrial Environments

  • Kim, Hyun-Hee;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.205-212
    • /
    • 2017
  • This paper focuses on worst-case delay analysis of the time-triggered IEEE 802.15.4 protocol to satisfy the industrial quality-of-service (QoS) performance. The IEEE 802.15.4 protocol is considered to be unsuitable for industrial networks because its medium access control method is contention-based CSMA/CA, which exhibits unstable performance with an unbounded delay distribution under heavy traffic. To avoid these limitations, this paper presents a time-triggered version of the nonbeacon-enabled network of IEEE 802.15.4 that relies on a time division multiplexing access (TDMA) method implemented in the application layer without any modification of specification. The timing analysis of this time-triggered IEEE 802.15.4 was executed, and the worst-case transmission delay was calculated. Based on this analysis, the time-triggered IEEE 802.15.4 is a promising alternative for wireless industrial networking.