• Title/Summary/Keyword: Workload Control

Search Result 212, Processing Time 0.028 seconds

A Study on Evaluation of Neck Muscle Workload in Static Work Using EMG (정적인 자세에서 근전도를 이용한 목 근육의 작업부하 평가)

  • Kim, Yu-Chang;Jeong, Hyun-Wook;Jang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.148-153
    • /
    • 2005
  • Computer dominated jobs and industrial automation have rapidly created work-related musculoskeletal disorders(WMSDs) and WMSDS are expanding to employee of other general industry. Specific risk factors associated with WMSDs include repetitive motion, heavy lifting, forceful exertion, contact stress, vibration awkward posture and rapid hand and wrist movement. The purpose of this paper is to analyze the effects of the neck muscle workload according to posture(joint angle) and load weight. Seven male students participated in this study. To analyze neck muscle workload was studied on electromyographic(EMG) activity for sternocleidomastoid and trapezius, was subjectively rated using a Borg's CR-10 scale. ANOVA showed that the CR-10 ratings and most EMG root-mean-square (RMS) value were statistically significant improvement according to posture(joint angle) and load weight. The results of this study indicate the joint angle and weight of neck muscle workload to provide safe working conditions. To reduce the large number and severity of WMSDs employees have been experiencing, we need to redesign the job in workplace to identify and control hazards that are reasonably likely to be causing or contributing to the WMSDs.

Comparative Study of Subjective Mental Workload Assessment Techniques for the Evaluation of ITS-oriented Human-Machine Interface Systems (지능형 교통체계 기반 인간-기계 인터페이스 시스템 평가를 위한 정신적부하 측정방법의 비교 연구)

  • Cha, Doo-Won;Park, Peom
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.45-58
    • /
    • 2001
  • Subjective mental workload assessment technique becomes a standard human factors and human-machine interface evaluation tool for the evaluation of ITS(Intelligent Transport Systems)-oriented information systems as well as the drivers visual activity analysis, physiological indices(GSR, EEG, ECG, etc.), secondary task performance, reaction time. vehicle control parameters(speed, steering behavior, accelerator control) that are widely applied for transportation and vehicle systems to evaluate the safety, to decide the system or design alternatives, and to establish the design guidelines. This paper reviewed and compared the most globally employed four mental workload assessment techniques that have been designed for the use of various human-machine systems and ITS-oriented in-vehicle information systems. NASA-TLX(National Aeronautics and Space Administration-Task Load Index). SWAT(Subjective Workload Assessment Technique), MCH(Modified Cooper-Harper) scale, and recently developed RNASA-TLX(Revision of NASA-TH) were compared in terms of sensitivity and subjective evaluations to derive the human-machine interface evaluation guidelines for the application of ITS-oriented in-vehicle information systems. Then, experiment results supported that RNASA-TLX is the prospective tool for the mental workload assessment of ITS-oriented in-vehicle information systems.

  • PDF

Analyzing Fine-Grained Resource Utilization for Efficient GPU Workload Allocation (GPU 작업 배치의 효율화를 위한 자원 이용률 상세 분석)

  • Park, Yunjoo;Shin, Donghee;Cho, Kyungwoon;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.111-116
    • /
    • 2019
  • Recently, GPU expands application domains from graphic processing to various kinds of parallel workloads. However, current GPU systems focus on the maximization of each workload's parallelism through simplified control rather than considering various workload characteristics. This paper classifies the resource usage characteristics of GPU workloads into computing-bound, memory-bound, and dependency-latency-bound, and quantifies the fine-grained bottleneck for efficient workload allocation. For example, we identify the exact bottleneck resources such as single function unit, double function unit, or special function unit even for the same computing-bound workloads. Our analysis implies that workloads can be allocated together if fine-grained bottleneck resources are different even for the same computing-bound workloads, which can eventually contribute to efficient workload allocation in GPU.

The Interaction of Cognitive Interference, Standing Surface, and Fatigue on Lower Extremity Muscle Activity

  • Hill, Christopher M.;DeBusk, Hunter;Simpson, Jeffrey D.;Miller, Brandon L.;Knight, Adam C.;Garner, John C.;Wade, Chip;Chander, Harish
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.321-326
    • /
    • 2019
  • Background: Performing cognitive tasks and muscular fatigue have been shown to increase muscle activity of the lower extremity during quiet standing. A common intervention to reduce muscular fatigue is to provide a softer shoe-surface interface. However, little is known regarding how muscle activity is affected by softer shoe-surface interfaces during static standing. The purpose of this study was to assess lower extremity muscular activity during erect standing on three different standing surfaces, before and after an acute workload and during cognitive tasks. Methods: Surface electromyography was collected on ankle dorsiflexors and plantarflexors, and knee flexors and extensors of fifteen male participants. Dependent electromyography variables of mean, peak, root mean square, and cocontraction index were calculated and analyzed with a $2{\times}2{\times}3$ within-subject repeated measures analysis of variance. Results: Pre-workload muscle activity did not differ between surfaces and cognitive task conditions. However, greater muscle activity during post-workload balance assessment was found, specifically during the cognitive task. Cognitive task errors did not differ between surface and workload. Conclusions: The cognitive task after workload increased lower extremity muscular activity compared to quite standing, irrespective of the surface condition, suggesting an increased demand was placed on the postural control system as the result of both fatigue and cognitive task.

Comparison of Yield and Workload depending on Stem Training Methods in Oriental Melon Hydroponics (참외 수경재배에서 줄기 유인 방법에 따른 수확량 및 작업 강도 비교)

  • Lee, Dong Soo;Kwon, Jin Kyung;Yun, Sung Wook;Lee, Si Young;Seo, Min Tae;Lee, Hee Ju;Lee, Sang Gyu;Kang, Tae Gyoung
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.377-382
    • /
    • 2021
  • Oriental melon (Cucumis melo L.) is generally cultivated on the ground by creeping culture. A farmer has a higher workload for training stems. This study was conducted to find out a new cultivation of oriental melon to reduce a workload and improve the quality of fruit. There were three treatments for training stem of oriental melon; upward stem growing, downward stem growing, control (creeping stem growing). The results of the plant growth and the net photosynthesis showed higher in upward stem growing. The root activity was higher in downward stem attract. The yield was not significant as 4,055kg/10a in upward stem attract and 3,983kg/10a in downward stem attract. According to the results of the ergonomic agricultural workload evaluation, in the case of the working posture, the working posture of creeping cultivation methods (squatting, bending) showed a higher risk level than the upward and downward cultivation methods. Therefore, it is recommended the upward stem attract of oriental melon is a new cultivation as well as an alternative method for creeping stem attract in terms of improving the plant growth and yield, and reducing the workload.

Performance of Excessive Mental-workload under Limited Reaction Time (제한된 반응시간에서 과도한 정신부하작업의 수행도에 관한 연구)

  • Oh Young-Jin;Kim Che-Soong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.2
    • /
    • pp.21-25
    • /
    • 2005
  • Human performance of system control under excessive mental-workload may differ from stable situation. In this study, design guidelines of secondary control system were introduced to enhance performance of safety control system. Under urgent situation, the first performance criterion is not a reaction time but safe control reaction that prevents system disaster. Therefore it is important to find out the facts that are mainly related system safety. Experimental results show performance of primary task didn't reflect whole system influence within a limited short reaction time. In this situation, the secondary task is more sensitive to system influence that varied with some factors of urgent status. Therefore, when a system proceeds to abnormal and unsafe status, and even more the reaction time is limited within a very short time to control the system, the estimation of human performance is more sensitive using secondary task performance then primary task performance. Those results mean it is required to develop various secondary tasks to design safety control systems preventing disaster, And also require many studies of estimation methods human performances especially when system status varies dangerous and/or unsafe situation.

  • PDF

The Effects of Control Takeover Request Modality of Automated Vehicle and Road Type on Driver's Takeover Time and Mental Workload (자율주행 차량의 제어권 인수요구 정보양상과 도로 형태에 따른 운전자의 제어권 인수시간과 정신적 작업부하 차이)

  • Nam-Kyung Yun;Jaesik Lee
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.51-70
    • /
    • 2023
  • This study employed driving simulation to examine how takeover request (TOR) information modalities (visual, auditory, and visual + auditory) in Level-3 automated vehicles, and road types (straight and curved) influence the driver's control takeover time (TOT) and mental workload, assessed through subjective workload and heart rate variations. The findings reveal several key points. First, visual TOR resulted in the quickest TOT, while auditory TOR led to the longest. Second, TOT was considerably slower on curved roads compared to straight roads, with the greatest difference observed under the auditory TOR condition. Third, the auditory TOR condition generally induced lower subjective workload and heart rate variability than the visual or visual + auditory conditions. Finally, significant heart rate changes were predominantly observed in curved road conditions. These outcomes indicate that TOT and mental workload levels in drivers are influenced by both the TOR modality and road geometry. Notably, a faster TOT is associated with increased mental workload.

Driver Workload Comparisons among Road Sections of Automated Highway Systems (자동주행 시스템 구간별 운전자 부하 비교 연구)

  • Cha, Du-Won;Park, Beom
    • Proceedings of the KOR-KST Conference
    • /
    • 2003.02a
    • /
    • pp.119-126
    • /
    • 2003
  • The aim of this research was to compare driver's workload among AHS (Automate Highway Systems) road sections in a virtual AHS environment that is based on a re Korean expressway in order to predict and compare the workloads imposed by the change (driver-vehicle interface and vehicle control authority. Road sections included the M (Manual Lane), TL1 (Transition Lane to enter the automated lane), AL (Automated Lane TL2 (Transition Lane to enter the manual lane after the end of automated driving), an post-AHS manual lane.

  • PDF

The Effects of Driver's Trust in Adaptive Cruise Control and Traffic Density on Workload and Situation Awareness (적응형 정속 주행 시스템에 대한 운전자 신뢰와 도로 혼잡도가 작업부하 및 상황인식에 미치는 효과)

  • Kwon, Soon-Chan;Lee, Jae-Sik
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.103-120
    • /
    • 2020
  • Using driving simulation, this study investigated the effects of driver's trust in the adaptive cruise control (ACC) system and road density on driver's workload and situation awareness. The drivers were allocated into one of four experimental conditions manipulated by ACC system trust level (trust-increased vs. trust-decreased) and road congestion (high vs. low). The workload and situational awareness of the participants were measured as dependent variables. The results showed followings. First, trust-decreased group for the ACC system had significantly lower trust scores for the system in all of the measurement items, including reducing the driving load and securing safe driving due to the use of this system, than the trust-increased group. Second, the trust-decreased group showed a slower reaction time in the secondary tasks and higher subjective workload than trust-increased group. Third, in contrast, the situational awareness for the driving situation was significantly higher in the trust-decreased group than trust-increased group. The results of this study showed that the driver's trust in the ACC system can affect the various information processing performed while driving. Also, these results suggest that trust in the user's system should be considered as an important variable in the design of an automated driving assistance system.

A Fundamental Study on Integrated Dynamic Control of 6WD/6WS Vehicle (6WD/6WS 차량의 통합운동제어에 관한 기초적 연구)

  • Kim, Young-Ryul;Park, Young-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.958-966
    • /
    • 2010
  • In this paper, we have proposed a integrated dynamic control architecture in 6WD(wheel drive)/6WS(wheel steering) vehicle for military applications. Since 6WD/6WS vehicle has inherent redundancy, the input variables to make any desired vehicle motion can not be determined uniquely. Therefore, optimal distribution method of tire forces is introduced, which is based on workload of each tire. Simulation result shows that this is effective for the energy minimization and dynamic performance enhancement. We also suggest how the integrated control with any failure mode should be reconstructed.