• Title/Summary/Keyword: Work pressure

Search Result 2,351, Processing Time 0.033 seconds

FLOW ANALYSIS OF THE ON-BOARD SYSTEM FOR THE AIR SUPPLY TO THE PAYLOAD FAIRING OF A LAUNCH VEHICLE (발사체 탑재물 페어링 내부 공기 공급을 위한 탑재 시스템 유동 해석)

  • Ok H.;Kim Y.;Kim I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.269-273
    • /
    • 2005
  • The on-board system for the air supply to the payload fairing(PLF) of a launch vehicle using both high and low pressure air was designed. The design concept was obtained from the CFD analysis of a Russian interstage air supply system, and a collector was adopted to expand the high pressure air. To verify that the on-board system would work as designed, a simplified axisymmetric computational model was made and a CFD analysis was also performed. It was found that the flow ejected from the hole of the collector expands to the Mach number of 4 and is soon retarded due to the action of viscosity. It was also found that a small gap between the low pressure duct and equipment bay wall can cause large velocity in PLF over the velocity requirement and no gap should be allowed in the design.

  • PDF

A Review on Fit Test for Respirators and the Regulations (호흡기보호구의 Fit Test 방법과 규정에 관한 고찰)

  • Han, Don-Hee;Willeke, Klaus;Colton, Craig E.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.38-54
    • /
    • 1996
  • Respirator fit testing is required before entering specific work environmentals to ensure that the respirator worn satisfies a minimum of fit and that the user knows when the respirator fits properly. The fit of a respirator can be determined by qualitative (QLFT) or quantitative fit test (QNFT). The QNFT, having been universally accepted more than the QLFT, provide an objective and numerical basis by measuring a fit factor (FF). Until a few years age, only one QNFT technigue was available and accepted by U.S. Occupational Safety and Health Administration (OSHA) regulations. In the 1980's and 1990's, several new and fundamentally different QNFT methods were developed. Two of the newer methods are commercially availale and are accepted by OSHA as suitable alternatives. In this articles, the principle of operation of each ONFT technique is explained and each technique's major advantages and disadvantages are pointed out. Emphasis is given to negative-pressure air-purifying respirators, as they are in most frequent use today. The requirements and recommendations for fit testing positive-pressure respirators are discussed as well. Finally, the presently available QNFT standards and regulations are summarized to assist the user in making fit testing decisions.

  • PDF

Mathematical Modeling of Combustion Characteristics in HVOF Thermal Spray Processes(I): Chemical Composition of Combustion Products and Adiabatic Flame Temperature (HVOF 열용사 프로세스에서의 연소특성에 관한 수학적 모델링(I): 연소생성물의 화학조성 및 단열화염온도)

  • Yang, Young-Myung;Kim, Ho-Yeon
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Mathematical modeling of combustion characteristics in HVOF thermal spray processes was carried out on the basis of equilibrium chemistry. The main objective of this work was the development of a computation code which allows to determine chemical composition of combustion products, adiabatic flame temperature, thermodynamic and transport properties. The free energy minimization method was employed with the descent Newton-Raphson technique for numerical solution of systems of nonlinear thermochemical equations. Adiabatic flame temperature was calculated by using a Newton#s iterative method incorporating the computation module of chemical composition. The performance of this code was verified by comparing computational results with data obtained by ChemKin code and in the literature. Comparisons between the calculated and measured flame temperatures showed a deviation less than 2%. It was observed that adiabatic flame temperature augments with increase in combustion pressure; the influence was significant in the region of low pressure but becomes weaker and weaker with increase in pressure. Relationships of adiabatic flame temperature, dissociation ratio and combustion pressure were also analyzed.

  • PDF

Effects of Potassium Ion Concentrations on the Cardiac Performances in the Turtle Heart Amyda japonica (자라 심장 박출량과 $K^{+}$ 농도)

  • Kim, Jun;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 1980
  • Changes in cardiac performances were observed under variations of the arterial and/or venous pressures with K-loading or K-depletion in turtle heart. Hearts were perfused with turtle Ringer-Locke's solutions containing various levels of potassium ion concentration. When venous pressure increased from 4 to 12 cm $H_2O$, cardiac output increased from $6.2{\pm}0.68$ to $15.7{\pm}0.75\;ml/min$, concomittantly. On the contrary, cardiac output decreased during the elevation of arterial pressure. Stroke work increased more prominently during the arterial pressure elevation than during the elevation of venous pressure. During K-depletion$(1{\sim}2mEq/L)$, cardiac output increased to two times that of normal K-concentration$(3{\sim}6\;mEq/L)$ group. Heart rate increased also, but less markedly. In K-loaded$(7{\sim}8\;mEq/L)$ group, both the cardiac output and heart rate decreased but stroke volume rather increased, because heart rate decrement was disproportionate to that of cardiac output. We concluded that in perfused turtle heart, cardiac output variation was more sensitive to K_depletion whereas heart rate to K-loading.

  • PDF

An approach to improve thickness distribution and corner filling of copper tubes during hydro-forming processes

  • GhorbaniMenghari, Hossein;Poor, Hamed Ziaei;Farzin, Mahmoud;Alves De Sousa, Ricardo J.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.563-573
    • /
    • 2014
  • In hydroforming, the general technique employed to overcome the problem of die corner filling consist in increasing the maximum fluid pressure during the forming process. This technique, in other hand, leads to other difficulties such as thinning and rupturing of the final work piece. In this paper, a new technique has been suggested in order to produce a part with complete filled corners. In this approach, two moveable bushes have been used. So, the workpiece moves driven by both bushes simultaneously. In the first stage, system pressure increases until a maximum of 15 MPa, providing aninitial tube bulge. The results showed that the pressure in this stage have to be limited to 17 MPa to avoid fracture. In a second stage, bushes are moved keeping the constant initial pressure. The punches act simultaneously at the die extremities. Results show that the friction between part and die decreases during the forming process significantly. Also, by using this technique it is possible to produce a part with reasonable uniform thickness distribution. Other outcomes of applying this method are the lower pressures required to manufacture a workpiece with complete filled corners with no wrinkling.

Experimental Study on the Flow Hysteresis Phenomenon in a Supersonic Nozzle (초음속 노즐에서 발생하는 유동 이력현상에 대한 실험적 연구)

  • Nam, Jong-Soon;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.206-212
    • /
    • 2011
  • Hysteresis phenomena in fluid flow systems are frequently encountered in many industrial and engineering applications and mainly appear during the transient processes of change of the pressure ratio. Shock-containing flow field in supersonic nozzles is typically subject to such hysteresis phenomena, but associated flow physics is not yet understood well. In the present study, experimental work has been carried out to investigate supersonic nozzle flows during the transient processes of change in the nozzle pressure ratio. Time-dependent surface wall pressures were measured by a multiple of pressure transducers and the flow field was visualized using a nano-spark Schlieren optical method. The results obtained show that the hysteresis phenomenon is strongly dependent on the nozzle geometry as well as the time scale of the change of pressure ratio.

  • PDF

Pressure field of a rotating square plate with application to windborne debris

  • Martinez-Vazquez, P.;Kakimpa, B.;Sterling, M.;Baker, C.J.;Quinn, A.D.;Richards, P.J.;Owen, J.S.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.509-529
    • /
    • 2012
  • Traditionally, a quasi steady response concerning the aerodynamic force and moment coefficients acting on a flat plate while 'flying' through the air has been assumed. Such an assumption has enabled the flight paths of windborne debris to be predicted and an indication of its potential damage to be inferred. In order to investigate this assumption in detail, a series of physical and numerical simulations relating to flat plates subject to autorotation has been undertaken. The physical experiments have been carried out using a novel pressure acquisition technique which provides a description of the pressure distribution on a square plate which was allowed to auto-rotate at different speeds by modifying the velocity of the incoming flow. The current work has for the first time, enabled characteristic pressure signals on the surface of an auto-rotating flat plate to be attributed to vortex shedding.

Numerical description of start-up viscoelastic plane Poiseuille flow

  • Park, Kwang-Sun;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-58
    • /
    • 2009
  • We have investigated the transient behavior of 1D fully developed Poiseuille viscoelastic flow under finite pressure gradient described by the Oldroyd-B and Leonov constitutive equations. For analysis we employ a simple $2^{nd}$ order discretization scheme such as central difference for space and the Crank-Nicolson for time approximation. For the analysis of the Oldroyd-B model, we also apply the analytical solution, which is obtained again in this work in terms of elementary solution procedure simpler than the previous one (Waters and King, 1970). Both models demonstrate qualitatively similar solutions, but their eventual steady flowrate exhibits noticeable difference due to the absence or presence of shear thinning behavior. In the inertialess flow, the flowrate instantaneously attains a large value corresponding to the Newtonian creeping flow and then decreases to its steady value when the applied pressure gradient is low. However with finite liquid density the flow field shows severe fluctuation even accompanying reversals of flow directions. As the assigned pressure gradient increases, the flowrate achieves its steady value significantly higher than its value during oscillations after quite long period of time. We have also illustrated comparison between 1D and 2D results and possible mechanism of complex 2D flow rearrangement employing a previous solution of [mite element computation. In addition, we discuss some mathematical points regarding missing boundary conditions in 2D modeling due to the change of the type of differential equations when varying from inertialess to inertial flow.

A Basic Study on Development of the Hetero-core Type Fiber Optic Pressure Sensor (헤테로코어형 광파이버 압력센서개발을 위한 기초연구)

  • Kim, Y.B.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • A new type fiber optic sensing system has been developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensor, for the purposes of monitoring large scaled structures, preserving natural environments and measuring physical phenomenons. The sensing system has been tested and evaluated in a possible outdoor condition in view of the full scaled operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended to measure such physical quantities as displacement, distortion, pressure, binary states and liquid adhesion. The experiment study has been performed to examine the performance to a pseudo-cracking experiment in the outdoor situation, and to clarify temperature influences to the system in terms of the coupling of optical connectors and the OTDR stability. It has been verified that the sensing system is robust to the temperature change ranging from the general condition to the hard condition. Especially, in this study, the specification and performances of the pressure sensor have been demonstrated to show the capability of inspecting various physical quantities.

  • PDF

A Computational Work of Critical Nozzle Flow for High-Pressure Hydrogen Gas Mass Flow Measurement (고압수소 유량계측용 임계노즐 유동의 수치해석적 연구)

  • Lee, Jun-Hee;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.227-230
    • /
    • 2006
  • The method of mass flow rate measurement using a critical nozzle is well established in the flow satisfying ideal gas law. However, in the case of measuring high-pressure gas flow, the current method shows invalid discharge coefficient because the flow does not follow ideal gas law. Therefore an appropriate equation of state considering real gas effects should be applied into the method. The present computational study has been performed to give an understanding of the physics of a critical nozzle flow for high-pressure hydrogen gas and find a way for the exact mass flow prediction. The two-dimensional, axisymmetric, compressible Navier-Stokes equations are computed using a fully implicit finite volume method. The real gas effects are considered in the calculation of discharge coefficient as well as in the computation. The computational results are compared with the previous experimental data and predict well the measured mass flow rates. It has been found that the discharge coefficient for high-pressure hydrogen gas can be corrected properly adopting the real gas effects.

  • PDF