• Title/Summary/Keyword: Work pressure

Search Result 2,346, Processing Time 0.033 seconds

An Investigation of the Noise in Ship Engine-Room and Cabins for Hearing Protection (I) (청력보호를 위한 선박 기관실 및 선실소음의 조사(I))

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.97-103
    • /
    • 1999
  • As the noise of ship engine room is too loud, the engineer who works in a ship engine-room has the trouble of hearing. In this paper deals the investigation of the noise of ship engine room and cabins with the internationally allowable noise exposure level and noise exposure time. Recently, the problem of engine-room noise is more serious because of shipowner wants to make small number and larger size of cylinder. Therefore, engineers work in a ship engine-room for a long time have the trouble of hearing when they are exposed the high noise level. In this study, two kinds of vessels were used to investigate the noise of engine room, engine-control room, bridge, offices and cabins. As criteria of sound levels, A-weighted sound pressure level and octave band pressure level were used.

  • PDF

The Effects of Friction on the Contact Area and the Distribution of Contact Pressure (접촉 면적과 접촉면 압력분포에 대한 마찰의 영향)

  • 이문주;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.193-199
    • /
    • 1999
  • In the 3-Dimensional contact of the smooth spheres, the effects of friction on the contact area and the distribution of contact pressure was studied numerically. The contact area and pressure distribution was evaluated for the only normal load and for the case of a normal load in the presence of a tangential traction. To do this work, the technique of simple discretization using the load . displacement relationship for a uniformly distributed load of a rectangular patch was used.

  • PDF

에너지 절약형 공기압 제어시스템 특성해석

  • 박재범;김동수;김형의;김기홍;염만오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.635-641
    • /
    • 1994
  • Recently, Improving the energy efficiency of a pneumatic system and reducing the consumption of compressed air were a concern of scholars at domestic and abroad. The using fields of a pneumatic system are widely used in factory automation of manufacturing line, chemical factories with explosiveness danger and petroleum industries etc. In particular, Pneumatic cylinder is applied to feeding work of workpiece, jig tools and press mechanism, reciprocation and rotary motion with rack and pinion. In this study, The experimental apparatus consisted to pneumatic cylinder, dual supply pressure regulator and solenoid valve. The dual supply pressure regulator connected to outlet port of solenoid valve. The supply pressure (4.5kgf/cm$\^$2/) of compressed air goes into the rodless chamber 1 to drive the pistion rod forward which is named working stage. The supply pressure(2kgf/cm$\^$2/) of compressed air goes into the rod chamber 2 to drive the piston rod backward which is named no-working stage. Accordingly, The research results of this study can be obtained to Energy-Saving Effects of the compressed air about 35%.

  • PDF

Development of Atmospheric Pressure Plasma Sources in KRISS

  • Tran, T.H.;You, S.J.;Kim, J.H.;Seong, D.J.;Jeong, J.R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.151-151
    • /
    • 2011
  • Atmospheric-pressure plasmas are used in a variety of materials processes. The lifetime of most atmospheric-pressure plasma sources is limits by electrode erosion due to energetic ion bombardment. These drawbacks were solved recently by several microplasma sources based on microstrip structure, which are more efficient and less prone to perturbations than other microplasma sources. In this work, we propose microplasma sources based on strip line and microstrip line, developed for the generation of microplasmas even in atmospheric air and analyzes these systems with microwave field simulation via comparative study with two previous microwave sources (Microstrip Spit Ring Resonator (MSRR), Microstrip Structure Source (MSS)).

  • PDF

Study of Pressure and Flow in the Air-Cleaner of Commercial Vehicle (디젤엔진의 공기청정기내 압력 및 유동분포에 관한 연구)

  • 류명석;구영곤;김경훈;맹주성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.47-53
    • /
    • 1997
  • The importance of intake system can not be overstressed in the recent heavy duty commercial vehicle design. The basic requirements of intake system are to have less flow resistance and better air cleaning performance which have direct effects on the performance and service life of engine. In order to improve the performance of engine intake system, the flow phenomena in the intake system should be fully understood. With readily availble CFD code, the numerical analysis becomes the more reliable tools for flow optimization in recent design work. In this research, flow field in the intake system was analyzed by STAR-CD, the 3-D computational fluid dynamics code. Especially, the flow inside of air cleaner was thoroughly analyzed. Pressure distribution and velocity profile in the air cleaner and intake duct was obtained. Having the dust seperated from incoming air at the expense of less pressure drop is the ultimate goal for the research.

  • PDF

Analysis of the Cyclic Variability in SI Engine at Idling (공회전에서 스파크 점화기관 연소의 사이클 변동 해석)

  • Han, Sung-Bin;Chang, Yong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.709-717
    • /
    • 2000
  • Cyclic variability has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under lean and highly diluted operation conditions. The cyclic combustion variations can be characterized by the pressure parameters, combustion parameters, and flame front parameters. The coefficient of variation in indicated mean effective pressure ($COV_{IMEP}$) defines the cyclic variability in indicated work per cycle, and it has been found that vehicle driveability problems usually result when $COV_{IMEP}$ exceeds about 10%. For analysis of the cyclic variability in SI engines at idling, the results show that cyclic variability by the $COV_{IMEP}$ or the coefficient of variation in maximum pressure can be explained and may be consequently reduced by the help of the optimum spark timings.

A Computational Study of the Improvement of Two-Dimensional Subsonic Diffuser Performance Using the Turbulent Wake Caused by a Cylinder (실린더 후류를 이용한 2 차원 디퓨저 성능개선에 관한 수치해석적 연구)

  • Kim, Tae-Ho;Yoon, Bok-Hyun;Oh, Dae-Geun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1720-1725
    • /
    • 2004
  • The present study addresses a computational work to investigate the influence of a turbulent wake flow on the pressure recovery of a two-dimensional subsonic diffuser. The turbulent wake is generated by a cylinder with a small diameter, which is installed at the diffuser inlet. Computation is applied to two-dimensional steady Navier-Stokes equations. The computational results are qualitatively well compared to existing experimental data. The results show that the diffuser pressure recovery is strongly dependent on the diameter and location of the cylinder. It is found that there is a certain diameter and location of cylinder for the diffuser pressure recovery to be most enhanced. Compared with no cylinder case, the diffuser performance increases up 24%.

  • PDF

Control characteristics of a refrigerant compressor test facility (냉매압축기 성능시험장치의 제어 특성)

  • Lee, J. Y.;Lee, D. Y.;Kim, K. H.;Nam, P. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.46-51
    • /
    • 1999
  • This paper describes the control charcteristics of thermal/flow systems. In thermal/flow systems, the transport lag plays as a dead time causing a deterioration of the controllability. Besides this, such many parameters including the temperature, pressure, and flow rate affect the system response that a control scheme which can deal with multi-input is required. Particularly in a refrigerant compressor test facility, the evaporator and condenser interact each other so that the change in the evaporator pressure cause the condenser pressure to change or vice versa. Therefore, to control the evaporator pressure, not only the cooling water flow rate in the evaporator but also the coolant flow rate in the condenser is considered. Meanwhile, the conventional PID controllers, which is suitable for a single input system, shows a large overshoot for a disturbance input. In this work, the predictive control scheme is introduced and its applicability is discussed for thermal/flow systems.

  • PDF

Interruption Capability of Hybrid Type GCB with High Opening Speed (고속도 개극 시의 복합소호 가스차단기의 차단특성)

  • Song Ki-Dong;Chong Jin-Kyo;Park Kyong-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.408-413
    • /
    • 2005
  • This paper presents the basic design technology on the hybrid type GCB(gas circuit breakers) through the test results. The three type hybrid interrupters according to the arrangement of the thermal expansion chamber and the puffer cylinder(they are called 'serial type', ' parallel/exchanged type ,' and ' parallel/separated type ' respectively in this work) were designed and manufactured and then the tests of operating characteristics and interrupting were performed using a simplified synthetic test facility. The interruption capability with the type and the opening speed and the pressure rise which is required to interrupt were examined. The change of pressure rise with the number of interruption was given quantitatively and therefore the pressure rise can be predicted. Finally, it was shown that the interruption capability tends to increase with the increasing of opening speed in the puffer type; however, the hybrid type interrupter has a different interruption characteristic.

Demonstration of Alternative Fabrication Techniques for Robust MEMS Device

  • Chang, Sung-Pil;Park, Je-Young;Cha, Doo-Yeol;Lee, Heung-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.184-188
    • /
    • 2006
  • This work describes efforts in the fabrication and testing of robust microelectromechanical systems (MEMS). Robustness is typically achieved by investigating non-silicon substrates and materials for MEMS fabrication. Some of the traditional MEMS fabrication techniques are applicable to robust MEMS, while other techniques are drawn from other technology areas, such as electronic packaging. The fabrication technologies appropriate for robust MEMS are illustrated through laminated polymer membrane based pressure sensor arrays. Each array uses a stainless steel substrate, a laminated polymer film as a suspended movable plate, and a fixed, surface micromachined back electrode of electroplated nickel. Over an applied pressure range from 0 to 34 kPa, the net capacitance change was approximately 0.14 pF. An important attribute of this design is that only the steel substrate and the pressure sensor inlet is exposed to the flow; i.e., the sensor is self-packaged.