• Title/Summary/Keyword: Work flow

Search Result 2,769, Processing Time 0.031 seconds

Two-phase flow pattern online monitoring system based on convolutional neural network and transfer learning

  • Hong Xu;Tao Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4751-4758
    • /
    • 2022
  • Two-phase flow may almost exist in every branch of the energy industry. For the corresponding engineering design, it is very essential and crucial to monitor flow patterns and their transitions accurately. With the high-speed development and success of deep learning based on convolutional neural network (CNN), the study of flow pattern identification recently almost focused on this methodology. Additionally, the photographing technique has attractive implementation features as well, since it is normally considerably less expensive than other techniques. The development of such a two-phase flow pattern online monitoring system is the objective of this work, which seldom studied before. The ongoing preliminary engineering design (including hardware and software) of the system are introduced. The flow pattern identification method based on CNNs and transfer learning was discussed in detail. Several potential CNN candidates such as ALexNet, VggNet16 and ResNets were introduced and compared with each other based on a flow pattern dataset. According to the results, ResNet50 is the most promising CNN network for the system owing to its high precision, fast classification and strong robustness. This work can be a reference for the online monitoring system design in the energy system.

An experimental analysis of work factors in Pre-combustion Chamber Diesel Engine (예연소실식 디이젤기관 일량구성인자에 관한 실험적 연구)

  • 최갑석;류정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.53-62
    • /
    • 1987
  • The Performance of Pre-combustion Chamber Diesel Engine mainly depends upon the compression, combustion and Expansion Processes. The analysis of varying tendency of the work factors for crank angles during these processes, which are consisted of 5 items such as exothermic energy, flow work, work in nozzle part, kinetic energy and cooling energy, are considered important as basic elements for effective combustion and performance improvement. In this paper, varying tendencies of the theoretical factors are investigated with pressure data through experiments. By the results, the trends of work factors are presented as basic data for comparing the influencing effects on work.

  • PDF

CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments

  • Jamshidi, Hamed;Nilsson, Hakan;Chernoray, Valery
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.2
    • /
    • pp.113-123
    • /
    • 2015
  • The efficiency of the ventilation system is a key point for durable and reliable electric generators. The design of such system requires a detailed understanding of the air flow in the generator. Computational fluid dynamics (CFD) has the potential to resolve the lack of information in this field. The present work analyses the air flow inside a generator model. The model is designed using a CFD-based approach, and manufactured by taking into consideration the experimental and numerical requirements and limitations. The emphasis is on the possibility to accurately predict and experimentally measure the flow distribution inside the stator channels. A major part of the work is focused on the design of an intake and a fan that gives an evenly distributed flow with a high flow rate. The intake also serves as an accurate flowmeter. Experimental results are presented, of the total volume flow rate, the total pressure and velocity distributions. Steady-state CFD simulations are performed using the FOAM-extend CFD toolbox. The simulations are based on the multiple rotating reference frames method. The results from the frozen rotor and mixing plane rotor-stator coupling approaches are compared. It is shown that the fan design provides a sufficient flow rate for the stator channels, which is not the case without the fan or with a previous fan design. The detailed experimental and numerical results show an excellent agreement, proving that the results reliable.

Plotting of 13 Kinds of Properties on Temperature-Entropy Chart of Air (공기의 온도-엔트로피 선도 상에서 13 종류의 물성치 작도)

  • Kim, Deok-Jin;Kim, Duck-Bong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1191-1196
    • /
    • 2009
  • The T-s chart of air displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. In previous study, the software analyzing 31 kinds of values in water system and 32 kinds of values in air-conditioning system were developed. In this study, the software drawing 13 kinds of quantity of state on air properties as ideal gas and analyzing 25 kinds of values in any air system was developed. The 13 kinds of quantity of state on air properties are temperature, pressure, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, and velocity of sound, and the 25 kinds of values including 13 kinds are mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, reversible work, lost work, and relative humidity. The developed software can draw any range of chart and analysis any state or process on air system. Also, this supports various document-editing functions such as power point. We wish to this chart is a help to design, analysis, and education in air system field.

  • PDF

A framework for parallel processing in multiblock flow computations (다중블록 유동해석에서 병렬처리를 위한 시스템의 구조)

  • Park, Sang-Geun;Lee, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1024-1033
    • /
    • 1997
  • The past several years have witnessed an ever-increasing acceptance and adoption of parallel processing, both for high performance scientific computing as well as for more general purpose applications. Furthermore with increasing needs to perform the complex flow calculations in an efficient manner, the use of the message passing model on distributed networks has emerged as an important alternative to the expensive supercomputers. This work attempts to provide a generic framework to enable the parallelization of all CFD-related works using the master-slave model. This framework consists of (1) input geometry, (2) domain decomposition, (3) grid generation, (4) flow computations, (5) flow visualization, and (6) output display as the sequential components, but performs computations for (2) to (5) in parallel on the workstation clustering. The flow computations are parallized by having multiple copies of the flow-code to solve a PDE on different spatial regions on different processors, while their flow data are exchanged across the region boundaries, and the solution is time-stepped. The Parallel Virtual Machine (PVM) is used for distributed communication in this work.

Optimal response of conical tool semi angle in ductile metal sheets indentation and its governing mechanics

  • Nazeer, Malik M.;Khan, M. Afzal;Haq, A-Ul
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.47-62
    • /
    • 2003
  • The nonlinear dependence aspect of various conical tool indentation parameters leading to an optimum tool semi angle value for easiest perforation is plotted and discussed explicitly in this work with the conclusion that tool angle has an optimum response towards most of the indentation parameters. Around this optimum angle, the aluminium sheets showed minimum fracture toughness as well as minimum work input to overcome the offered resistance. At the end, the mechanism leading to this phenomenon is presented with the conclusion that plastic flow dominates as the dimple semi cone angle reaches 35 and both pre and post plastic flow perforations lead the tool semi cone angle value towards this dimple cone semi angle of plastic flow initiation for its optimum performance. It is also concluded that specimen material failure is solely under tensile hoop stress and hence results into radial cracks initiation and propagation.

AN OPTIMAL CONTROL APPROACH TO CONFORMAL FLATTENING OF TRIANGULATED SURFACES

  • PARK, YESOM;LEE, BYUNGJOON;MIN, CHOHONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.351-365
    • /
    • 2019
  • This article presents a new approach for conformal flattening with optimal cone singularity. The algorithm here takes an optimal control for selecting optimal cones and uses the Ricci flow to force the flattening. This work is considered as a modification to the work of Soliman et al. [1] in the sense that they make use of the Yamabe equation for the flattening, which is an approximation of the Ricci flow. We present a numerical algorithm based on the optimal control with the mathematical background. Several numerical results validate that our method is optimal in total cone angle and usage of the Ricci flow ensures the conformal flattening while selecting optimal cones.

Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid (암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • The power cycle using ammonia-water mixture as a working fluid is a possible way to improve efficiency of the system of low-temperature source. In this work thermodynamic performance of the ammonia-water regenerative Rankine cycle with partial-boiling flow is analyzed for purpose of extracting maximum power from the source. Effects of the system parameters such as mass fraction of ammonia, turbine inlet pressure or ratio of partial-boiling flow on the system are parametrically investigated. Results show that the power output increases with the mass fraction of ammonia but has a maximum value with respect to the turbine inlet pressure, and is able to reach 22 kW per unit mass flow rate of source air at $180^{\circ}C$.

DEVELOPMENT PROCESS OF INFORMATION FLOW RETRIEVAL SYSTEM FOR LARGE-SCALE CONSTRUCTION PROJECTS

  • Jinho Shin;Hyun-soo Lee ;Moonseo Park;Jung-ho Yu;Jungseok Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.556-560
    • /
    • 2011
  • Players of construction projects proceed with each work process by information gathering, modification and communication. Due to the complex and long-span lifecycle projects increased, it became more important to grasp this mechanism for the successful project performance in construction project. Hence, most project information management systems or knowledge management systems equip information retrieval system. There are two logic to infer the meaning of retrieval target; inductive reasoning and deductive reasoning. The former is based on metadata explaining the target and the later is based on relation between data. To infer the information flow, it is necessary to define the correlation between players and work processes. However, most established information retrieval systems are based on index search system and it is not focused on correlation between data but data itself. Thus, this research aims to research on process of information flow retrieval system for large-scale construction projects.

  • PDF

Modeling and simulation of air-water upward annular flow characteristics in a vertical tube using CFD

  • Anadi Mondal;Subash L Sharma
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2881-2892
    • /
    • 2024
  • Annular flow refers to a special type of two-phase flow pattern in which liquid flows as a thin film at the periphery of a pipe, tube, or conduit, and gas with relatively high velocity flows at the center of the flow section. This gas also includes dispersed liquid droplets. The liquid film flow rate continuously changes inside the tube due to two processes-entrainment and deposition. To determine the liquid holdup, pressure drop, the onset of dryout, and heat transfer characteristics in annular flow, it is important to have proper knowledge of flow characteristics. Especially a better understanding of entrainment fraction is important for the heat transfer and safe operation of two-phase flow systems operating in an annular two-phase flow regime. Therefore, the objective of this work is to develop a computational model for the simulation of the annular two-phase flow regime and assess the various existing models for the entrainment rate. In this work, Computational Fluid Dynamics (CFD) in ANSYS FLUENT has been applied to determine annular flow characteristics such as liquid film thickness, film velocity, entrainment rate, deposition rate, and entrainment fraction for various gas-liquid flow conditions in a vertical upward tube. The gas core with droplets was simulated using the Discrete Phase Model (DPM) which is based on the Eulerian-Lagrangian approach. The Eulerian Wall Film (EWF) model was utilized to simulate liquid film on the tube wall. Three different models of Entrainment rate were implemented and assessed through user-defined functions (UDF) in ANSYS. Finally, entrainment for fully developed flow was determined and compared with the experimental data available in the literature. From the simulations, it was obtained that the Bertodano correlation performed best in predicting entrainment fraction and the results were within the ±30 % limit when compared to experimental data.