IMF이후 경쟁의 심화와 적대적인 경영환경에 효과적으로 대응하고자 많은 호텔기업들이 구조조정을 실시해오고 있다. 이러한 구조조정은 인력감축을 동반하기 때문에 구조조정 과정에서 공정성을 지각하는데, 인력감축에서 살아남은 생존자들이 인력감축의 절차나 실무에서 불공정성을 지각할 때 상사에 대한 신뢰감이나 조직유효성을 감소시키는 것으로 나타났다. 따라서 본 연구는 호텔기업을 대상으로 구조조정 이후 살아남은 생존자를 대상으로 정리해고의 공정성 지각이 경영진의 신뢰, 직무만족 및 조직몰입에 어떠한 영향을 미치는지를 살펴보고자 하는 것이다. 이러한 연구목적을 달성하기 위해 실증분석을 실시한 결과 잔류종업원들은 구조조정 과정에서 절차 공정성 및 분배 공정성을 높게 지각 할수록 경영진에 대한 신뢰감과 조직 몰입이 높아지는 것으로 나타났다. 그러나 구조조정 과정에서 절차 공정성을 높게 지각할수록 직무만족은 높아지는 것으로 나타났지만, 분배 공정성은 직무만족과는 인과관계가 없는 것으로 나타났다. 또한 구조조정 과정에서의 경영진에 대한 신뢰감이 높아질수록 직무만족이나 조직몰입은 높아지는 것으로 나타났다.
혈중 ZPP 농도를 생물학적 모니터링 표지자로 사용하여 새로 설립되는 축전지 제조 공장에서 작업환경과 개인위생에 대한 개선조치의 영향을 관찰하기 위하여 연취급 근로자 100명을 대상으로 입사한 시기를 기준으로 3개의 군으로 구분한 후 채용시 측정된 혈중 ZPP 농도와 약 3개월 간격으로 12-18개월간 측정되어 보관된 기록 중 혈중 ZPP 농도 자료를 분석하였다. 각 군은 개선조치 시행전인 1987년 8월의 작업장의 기중 연 농도를 기준으로 $0.30mg/m^3$ 이상인 단위 부서들을 제 I 부서로, $0.30mg/m^3$ 미만인 단위 부서들을 제 II 부서로, 비교적 기중 연 농도가 낮을 것으로 예측되어 1988년 1월부터 새로 기중 연 농도가 측정된 단위 부서들을 제 III부서로, 그리고 작업장소가 일정하지 않고 이동하면서 근무하는 단위 부서들을 제IV부서로 대분하였고, 1987년 8월부터 약 6개월 간격으로 측정된 작업장의 기중 연 농도를 분석하였다. 또한 대조군 31명중 6개월째까지 관찰되었던 22명도 채용시와 6개월 후에 측정된 혈중 ZPP 농도의 변화를 분석하였다. 작업환경 및 개인 위생에 관한 개선조치를 1987년 8월 중순부터 시행하였으며, 주 1회 보건관리자를 통한 보건교육과 건강상담이 실시되었다. 부서별 기중 연 농도는 1987년 8월부터 약 6개월 간격으로 3회 측정된 결과, 제 I 부서는 처음에는 $0.365mg/m^3$였으나 작업환경개선조치 후 $0.216mg/m^3$, 1년후에는 $0.208mg/m^3$로 감소되었고, 제 II 부서는 처음에 $0.232mg/m^3$였는데 개선조치 후 $0.148mg/m^3,\;0.120mg/m^3$가 되었으며, 제 III 부서는 1988년 1월의 측정치가 $0.124mg/m^3$였고, 8월에는 $0.081mg/m^3$였다. 제 IV 부서는 1988년 8월에 $0.110mg/m^3$였다. 대조군에서의 혈중 ZPP 농도는 31명중 6개월째까지 관찰되었던 22명에서 채용시와 6개월 후가 각각 $16.45{\pm}4.83{\mu}g/d\ell$과 $17.77{\pm}5.59{\mu}g/d\ell$로 유의한 차이가 없었다. 공장이 가동되기 전에 입사한 A군에 있어서는 채용시 혈중 ZPP농도가 $17.36{\pm}5.20{\mu}g/d\ell$였고, 3개월째에는 $23.00{\pm}13.06{\mu}g/d\ell$였으며, 개선 조치가 시행된 직후인 6개월째에는 $27.25{\pm}6.40{\mu}g/d\ell$로 유의하게 증가되었고(p<0.01), 최고치를 나타내었다. 9개월째에 측정된 농도는 $25.48{\pm}5.17{\mu}g/d\ell$로 6개월째의 검사 농도보다 유의하게 감소된 결과를 나타내었다(p<0.05). 12개월째부터 3회의 측정치는 유의한 증가나 감소가 없이 대체로 비슷한 농도의 양상을 보였다. 공장이 가동된 후 개선조치가 시행되기 전에 입사한 B군의 경우에 있어서는 채용시에 혈중 ZPP농도가 $14.34{\pm}6.10{\mu}g/d\ell$였고, 개선조치가 시행된 직후인 3개월째에는 $28.97{\pm}7.14{\mu}g/d\ell$로 급격히 증가되었으며 통계적으로 유의하였다(p<0.01). 6개월째부터 4회의 측정치는 유의한 증가나 감소가 없이 비슷한 농도의 양상을 보였다. 개선조치가 시행된 후 입사한 C군에서는 채용시 혈중 ZPP 농도가 $21.34{\pm}5.25{\mu}g/d\ell$였고, 입사한 후 3개월째에는 $23.37{\pm}3.86{\mu}g/d\ell$로 유의하게 증가되었으며(p<0.01), 6개월째에는 $23.93{\pm}3.64{\mu}g/d\ell$의 농도를 보였고, 9개월째에는 $25.50{\pm}3.01{\mu}g/d\ell$로 유의한 증가를 보였다(p<0.01). 계속하여 3개월 뒤 측정된 12개월째에는 그 농도를 계속 유지하였으며, 서서히 증가하는 경향을 보였다. 부서별 비교에서 근로자들의 혈중 ZPP 농도는 기중연 농도와는 비례하지 않았고, 기중 연 농도가 제일 높은 제 I 부서에서 오히려 더 완만한 증가를 보였으며, 기중 연 농도가 제일 낮은 제III부서에서 다른 부서보다 더 급격히 증가되는 것으로 나타났다. 이상의 결과들은 기중 연 농도와 혈중 연 농도 및 혈중 ZPP농도에 대한 모든 정보를 근로자들에게 알려줌으로써 상대적으로 높은 기중 연 농도를 나타내는 부서에 근무하는 근로자들이 보호구 착용과 개인위생에 대한 개선조치에 더욱 철저히 참가하게 되었다고 생각되며, 개인위생 및 보건교육, 상담 등의 건강증진 프로그램이 초기부터 집중적으로 실시되었기 때문이라고 생각된다. 따라서 작업환경 개선에 대한 효과도 중요하나, 개인 위생 관리, 개인보호구착용 교육 및 보건 관리의 효과도 상당히 반영된 것으로 생각된다.
본 연구에서 수행한 Model 시뮬레이션에 의한 열환경 분석 기법은 지역별로 다양한 기상여건 하에서 대상온실의 난방 및 냉방부하를 보다 합리적으로 예측할 수 있을 뿐만 아니라 냉방이나 난방용 시스템의 결정을 비롯한 난방대책을 수립하고, 에너지 이용 전략의 수립이나 계절적인 작부계획 수립, 온실산업용 적지선정 등에 유익하게 활용될 수 있을 것이라 판단된다. 본 연구에서는 온실의 적극적인 환경조절 유형을 난방과 냉방의 두 가지로 대별하고, 난방 소요열량 산정을 비롯하여 야간의 보온 커튼효과, Heating Degree-Hour 산정 등 난방과 관련된 시뮬레이션은 동적 모형을 이용하여 시간별, 일별 및 월별로 검토하였으며, 환기를 비롯한 차광, 증발냉각시스템의 효과 분석은 정적모형을 이용하여 검토하였다. 특히 하절기 지하수와 같은 저온수를 직접 이용하거나 Heat Pump를 통하여 확보될 수 있는 저온수를 이용하여 온실의 피복면에 살수함으로서 확보할 수 있는 온실냉방효과를 검토하는 데는 1.2m$\times$2.4m 크기의 모형온실을 제작하여 기초실험을 수행함으로서 동절기의 수막시스템의 보온효과와 마찬가지로 하절기 냉방 효과를 거둘 수 있다는 가능성을 확인하였다. 본 연구에 활용된 온실의 수치 환경모형 중 난방관련 시뮬레이션용 동적 수치모형은 소기의 목적을 달성하는데 충분히 응용될 수 있는 이론모형이다. 이 이론모형이 범용성이 높은 것은 온실 내ㆍ외의 미기상 변화, 특히 난방이나 냉방이 본격적으로 요구되는 기간동안에 온도, 습도, 일사, 풍속 등의 미기상 인자들을 면밀하게 관찰하여 실측된 자료를 바탕으로 개발되었고, 다양한 자료에 의해 충분히 검정되었기 때문이다. 본 연구에서는 경남 진주지역의 어느 특정 기간(1987년)의 시간별 기상자료를 중심으로 온실의 열적 환경변화에 대한 수치모형 시뮬레이션을 실시하였으며, 아직 수치모형에 의한 시뮬레이션이 불가능한 일부 냉방효과를 검토하는 데는 모형 실험을 실시하였으며, 그 결과를 요약하면 다음과 같다. 1. 주간과 야간의 설정온도를 달리하고 다단계 변온조절방식으로 시뮬레이션을 행한 결과 난방 소요열량은 난방 설정온도에 따라 현저한 차이를 보였다. 특히 주간 설정온도에 비하여 야간 설정온도가 난방 소요열량에 예민하게 영향을 미치므로 야간의 설정온도 결정에 신중을 기해야 할 것으로 판단된다. 2. 기존의 Heating Degree-Hour 자료는 평균 외기온을 중심으로 임의의 설정온도에 대하여 산정된 값이므로 난방 소요열량에 대한 상대적인 비교수단은 되나 고려되는 기상인자의 제한과 설정온도의 임의성 때문에 실용성이 부족하다. 따라서 본 연구에서 제시된 것처럼 온실 주변의 제반 미기상 인자나 경계조건이 반영됨은 물론 작물의 생육상태 및 구체적인 설정온도까지도 고려하는 동적 수치모형으로 시시각각으로 예측된 실내기온을 중심으로 재배기간 동안의 난방열량을 적산함이 합리적이라 판단된다. 기존의 MDH 자료로 난방 설계를 할 경우에는 지나치게 과잉설계 될 가능성이 있다. 3. 산정된 난방 소요열량은 물론 커튼의 보온성능도 월별 기상여건에 따라 현저한 차이를 보이며, 시뮬레이션에 이용된 커튼의 경우 높은 보온효과를 보임으로서 년 평균 50% 이상의 난방 에너지를 절감할 수 있으며, 동절기 3-4개월의 집중 난방기에 에너지가 크게 절감됨을 발견할 수 있다. 4. 고온기 환기성능은 온실의 구조, 기상조건, 작물의 생육상태 등에 따라 다소의 차이가 있으나 환기율에 의해 크게 좌우되며, 시뮬레이션에 이용된 두 가지 농가보급형 온실 모두 환기율의 증가에 따른 실내기온의 강하 효과가 환기율이 1회/min 정도를 넘어서면서 급격히 둔화되는 현상을 보인다. 이는 기존에 권장되고 있는 적정 환기율인 1회/min 전후의 환기 시스템을 갖추는 것이 합리적임을 확인해 준다. 5. 작물이 성숙된 유리온실에서 외기의 상대습도가 50%인 쾌청한 주간동안 연속적으로 1회/min로 환기를 시킬 경우 실내기온 36.5$^{\circ}C$의 대조구에 비한 온도강하는 50% 차광만 했을 시 2.6$^{\circ}C$이고 효율 80%의 Pad & Fan 시스템만 작동시 6.1$^{\circ}C$ 정도이며, 차광과 냉각시스템을 동시에 작동시는 약 8.6$^{\circ}C$로서 외기온보다 3.3$^{\circ}C$가 낮은 28$^{\circ}C$까지 실내온도를 낮출 수 있으나, 동일 조건하에서 외기의 상대습도가 80%로 높은 경우에는 Pad & Fan시스템에 의한 온도강하가 2.4$^{\circ}C$에 불과하여 50% 차광하에서도 외기온 이하로 실내온도를 낮출 수 없음을 알 수 있다. 6. 하절기 3개월(6/1-8/31)동안 Pad & Fan 시스템의 냉방효과($\Delta$T)는 설정된 작동 온도에 따라 다소 차이를 보일 것으로 예상되나 본 시뮬레이션에서 설정한 시스템의 작동 온도 27$^{\circ}C$에서 상대습도와의 상관관계는 대략 다음과 같았다: $\Delta$T= -0.077RH+7.7 7. 전형적인 하절기 주간기상 하에서 경시적 냉방효과를 분석한 결과 환기만으로는 실내기온을 외기온 보다 5$^{\circ}C$ 높게 유지하는 정도가 고작이고, 차광이나 증발식 냉방시스템 만으로는 작물이 성숙한 단계에서조차도 외기온 이하로 떨어뜨리기가 어려우나 차광과 아울러 증발식 냉방을 병행할 경우에는 작물상태에 따라 다소 차이는 있지만 실내기온을 외기온보다 2.0-2.3$^{\circ}C$ 낮게 유지할 수 있음을 발견할 수 있다. 8. 일사가 차단된 27.5-28.5$^{\circ}C$의 외기온하에서 6.5-8.5$^{\circ}C$의 냉수를 온실 바닥면적 1$m^2$당 1.3 liter/min의 유량으로 온실표면에 살수했을 때 실내기온을 외기온보다 1$0^{\circ}C$ 낮은 16.5-18.$0^{\circ}C$ 정도로 낮출 수 있었다. 앞으로 살수 수온(T$_{w}$ )이나 외기온(T$_{o}$ ) 뿐만아니라 살수율(Q)에 따라 온실기온 (T$_{g}$ )에 미치는 상관 관계 T$_{g}$ = f(T$_{w}$ , Q, T$_{o}$ )를 구명하여 지하수 자체 또는 Heat Pump를 이용한 지하수온 이하의 냉수로 온실냉방의 가능성을 구명하는 것이 앞으로의 과제이다.
최근 알파고의 등장으로 딥러닝 기술에 대한 관심이 고조되고 있다. 딥러닝은 향후 미래의 핵심 기술이 되어 일상생활의 많은 부분을 개선할 것이라는 기대를 받고 있지만, 주요한 성과들이 이미지 인식과 자연어처리 등에 국한되어 있고 전통적인 비즈니스 애널리틱스 문제에의 활용은 미비한 실정이다. 실제로 딥러닝 기술은 Convolutional Neural Network(CNN), Recurrent Neural Network(RNN), Deep Boltzmann Machine (DBM) 등 알고리즘들의 선택, Dropout 기법의 활용여부, 활성 함수의 선정 등 다양한 네트워크 설계 이슈들을 가지고 있다. 따라서 비즈니스 문제에서의 딥러닝 알고리즘 활용은 아직 탐구가 필요한 영역으로 남아있으며, 특히 딥러닝을 현실에 적용했을 때 발생할 수 있는 여러 가지 문제들은 미지수이다. 이에 따라 본 연구에서는 다이렉트 마케팅 응답모델, 고객이탈분석, 대출 위험 분석 등의 주요한 분류 문제인 이진분류에 딥러닝을 적용할 수 있을 것인지 그 가능성을 실험을 통해 확인하였다. 실험에는 어느 포르투갈 은행의 텔레마케팅 응답여부에 대한 데이터 집합을 사용하였으며, 전통적인 인공신경망인 Multi-Layer Perceptron, 딥러닝 알고리즘인 CNN과 RNN을 변형한 Long Short-Term Memory, 딥러닝 모형에 많이 활용되는 Dropout 기법 등을 이진 분류 문제에 활용했을 때의 성능을 비교하였다. 실험을 수행한 결과 CNN 알고리즘은 비즈니스 데이터의 이진분류 문제에서도 MLP 모형에 비해 향상된 성능을 보였다. 또한 MLP와 CNN 모두 Dropout을 적용한 모형이 적용하지 않은 모형보다 더 좋은 분류 성능을 보여줌에 따라, Dropout을 적용한 CNN 알고리즘이 이진분류 문제에도 활용될 수 있는 가능성을 확인하였다.
강판 표면 결함은 강판의 품질과 가격을 결정하는 중요한 요인 중 하나로, 많은 철강 업체는 그동안 검사자의 육안으로 강판 표면 결함을 확인해왔다. 그러나 시각에 의존한 검사는 통상 30% 이상의 판단 오류가 발생함에 따라 검사 신뢰도가 낮은 문제점을 갖고 있다. 따라서 본 연구는 Simultaneous MTS (S-MTS) 알고리즘을 적용하여 보다 지능적이고 높은 정확도를 갖는 새로운 강판 표면 결함 진단 시스템을 제안하였다. S-MTS 알고리즘은 단일 클래스 분류에는 효과적이지만 다중 클래스 분류에서 정확도가 떨어지는 기존 마할라노비스 다구찌시스템 알고리즘(Mahalanobis Taguchi System; MTS)의 문제점을 해결한 새로운 알고리즘이다. 강판 표면 결함 진단은 대표적인 다중 클래스 분류 문제에 해당하므로, 강판 표면 결함 진단 시스템 구축을 위해 본 연구에서는 S-MTS 알고리즘을 채택하였다. 강판 표면 결함 진단 시스템 개발은 S-MTS 알고리즘에 따라 다음과 같이 진행하였다. 첫째, 각 강판 표면 결함 별로 개별적인 참조 그룹 마할라노비스 공간(Mahalanobis Space; MS)을 구축하였다. 둘째, 구축된 참조 그룹 MS를 기반으로 비교 그룹 마할라노비스 거리(Mahalanobis Distance; MD)를 계산한 후 최소 MD를 갖는 강판 표면 결함을 비교 그룹의 강판 표면 결함으로 판단하였다. 셋째, 강판 표면 결함을 분류하는 데 있어 결함 간의 차이점을 명확하게 해주는 예측 능력이 높은 변수를 파악하였다. 넷째, 예측 능력이 높은 변수만을 이용해 강판 표면 결함 분류를 재수행함으로써 최종적인 강판 표면 결함 진단 시스템을 구축한다. 이와 같은 과정을 통해 구축한 S-MTS 기반 강판 표면 결함 진단 시스템의 정확도는 90.79%로, 이는 기존 검사 방법에 비해 매우 높은 정확도를 갖는 유용한 방법임을 보여준다. 추후 연구에서는 본 연구를 통해 개발된 시스템을 현장 적용하여, 실제 효과성을 검증할 필요가 있다.
최근 외환위기 이후 기업 R&D 투자의 실질증가율이 외환위기 이전의 절반에 가까운 평균 약 7.1%로 떨어지고 있으며, 대기업에 비해 중소기업에 대한 정부의 R&D 투자 지원이 상대적으로 유리한 데도 중소기업의 R&D 투자 비중은 줄어들고 있다. 또한 1990년대 중반부터 상위 3개 기업을 제외한 대기업 R&D 투자는 증가하지 않고 있어 대기업 간의 R&D 투자 양극화 현상이 나타나고 있다. 이러한 기업의 R&D 투자 현상의 원인이 무엇인지 분석해 볼 필요가 있다. 또한 정부의 R&D 직접 보조금 정책이나 조세지원 정책의 당위성에 대해서 이론적으로나 현실적으로 그 필요성이 인정되더라도 정책의 효율성에 대해서는 검증해 보아야 할 것이다. 본 연구에서는 우리 정부가 가장 보편적으로 활용하고 있는 R&D 보조금 지원제도와 조세지원제도가 과연 효과가 있는지를 실증 분석을 통해 검증해 보려고 한다. 특히 우리나라의 재정지원제도는 대기업과 중소기업 간에 차별적으로 적용되고 있기 때문에 기업 규모에 따른 정책 효과를 구분하여 분석한다. 본 연구의 실증 분석에 이용한 개별 기업의 R&D 데이터는 2002년에서 2005년까지 기업의 연구개발 활동에 대해 서베이 한 "과학기술연구개발활동조사보고"의 기업별 원시 패널 데이터 중에서 활용한 불균형(unbalanced) 패널 데이터이다. 각 기업의 보조금과 관련한 데이터는 "과학기술연구개발활동조사보고"의 서베이 데이터를 사용했으며, 조세지원을 나타내는 사용자 비용에 관한 데이터는 이론적 모형에서 도출하였다. 본 연구의 패널 데이터 분석은 고정효과 모형을 대기업, 중소기업 및 모든 기업에 각각 적용했다. 본 연구의 실증 분석 결과는 다음과 같다. 정부의 직접 보조금 지원은 대기업의 경우 R&D 투자를 늘리는 유인효과(crow이ng-in effect)를 보인데 반해, 중소기업은 R&D 투자를 줄이는 구축효과(crowding-out effect)가 나타났다. 그러나 대기업이나 중소기업 모두 정부의 보조금 지원정책에 대한 반응이 매우 비탄력적으로 추정되었기 때문에 R&D 보조금 지원정책이 기업의 R&D 투자에 미치는 영향은 매우 낮은 것으로 판단된다. 정부의 R&D 조세지원은 대기업과 중소기업의 R&D 투자를 유인하는 것으로 분석되었으며, 특히 중소기업보다 대기업의 R&D 촉진에 더 효과적인 것으로 나타났다. 조세지원으로 사용자 비용이 1% 감소하면 대기업은 R&D 투자를 0.99% 증가시키고, 중소기업은 0.054% 증가시키는 것으로 추정되었다. 본 연구의 분석 결과에서 시사하는 정부의 R&D 재정지원제도의 개선 방향은 다음과 같이 요약할 수 있다. 정부의 R&D 보조금은 기업의 R&D 투자를 구축하지 않도록 기업과 중복되지 않는 기초연구와 공공기술 지원에 국한해야 하며, 중소기업에 대해서는 R&D 인프라 구축과 기술정보지원 등 R&D 서버스(extension service) 지원에 초점을 두어야 할 것이다. 대기업에 대한 R&D 조세지원은 한시적으로 강화할 필요가 있다. 본 연구는 4개 연도의 기업 패널 데이터를 활용하였는데, 앞으로 정책의 효과를 장기간에 걸쳐 분석할 수 있는 거시 시계열 데이터를 활용한 분석의 보완이 필요하다. 또한 기업의 R&D 투자 촉진 외에도 일반 투자나 기타 목적을 위해 시행되고 있는 정부의 재정 정책들과의 대체 혹은 보완 관계의 여부를 검증해 볼 필요가 있다. 특히 중소기업의 시설투자 세액 공제와 R&D 투자 세액공제 제도의 혜택은 단기투자와 장기투자를 선택해야 하는 기업의 의사 결정에 영향을 줄 수 있다.
산업현장의 변화와 요구에 부응할 수 있는 인력을 체계적으로 양성하기 위하여 2001년에 국무조정실을 중심으로 NCS(National Competency Standards, 이하 NCS)와 국가자격체제(National Qualification Frameworks, 이하 NQF)의 도입이 결정되었다. 건설분야 내 조경 역시 2008년 "국가직무능력표준(NCS) -조경"이 시범 개발되어 2009년부터 3년간 시범운영되었다. 특히 2013년 출범한 박근혜 정부의 주요 국정과제 중 하나로 '학벌이 아닌 능력 중심의 사회 구현'이 채택되면서, 이를 실천하기 위한 구체적인 수단으로 NCS 체제 구축이 전국적으로 확산되고 있는 시점이다. 그러나 국가에서 개발한 NCS의 경우, 이상적인 직무수행능력을 명시하였기 때문에 각 대학의 학생수준의 차이, 기자재와 교수들의 확보문제, 현행교육과정의 시수 문제 등 실질적인 운영상의 문제점을 반영하지 못한 단점이 있으므로, 이를 현실적인 교육과정에 연착륙시키기 위해서는 현재의 교육과정과 NCS와의 차이 즉 갭(gap)을 명확히 분석하는 과정이 선행되어야 한다. 갭분석은 기존의 교육과정을 NCS 기반 교육과정으로 개편하기 위한 초기 단계의 방법론으로 NCS 능력단위별 능력단위요소와 수행준거를 기준으로 학과 내 기존 교육과정과의 괴리도 혹은 일치 정도를 1에서 5까지 리커트 척도를 활용하여 기입한 후 분석하는 방법이다. 이처럼 현재의 대학 내 교육과정과 NCS와의 일치 및 괴리 정도를 측정함으로써 향후 NCS 운영을 희망하는 대학에서는 NCS의 적용 가능성과 개발 운영 이후의 효과성을 검증할 수 있는 기초 도구를 확보할 수 있다. 갭분석을 통한 교육과정 개편의 장점으로는 첫째, 정부의 재정지원 사업과 연계하여 정성적인 학과별 NCS 도입률에 대한 정량적 지표를 제공할 수 있으며, 둘째, NCS 기반 교육과정 개편 시 부족한 혹은 포화상태인 부분에 대한 객관적인 기준을 제공해 준다. 즉, 해당 NCS 세분류 도입 시 부족한 능력단위 및 능력단위요소를 추출할 수 있으며, 기존 과목별 능력단위요소별로 보완 사항도 추출할 수 있는 동시에, 이를 통한 상세 강의계획서 및 기초 교과목 개설을 위한 방향성을 제시해 주는 장점이 있다. 다만, 현재까지 개발된 갭분석의 이론을 보완하여 보다 체계적으로 정비해야 하는 과제는 남아 있다. 교육부, 고용노동부는 산업현장의 요구를 교육훈련 및 자격에 체계적으로 반영하기 위해 관련 산업계 인사들이 모여 실무적인 차원에서 NCS 표준을 적극적으로 개발하고 보급하여야 하며, NCS 적용을 희망하는 대학에서는 일과 자격이 연계될 수 있는 교육과정을 NCS 기반으로 개편하여야 할 것이다. 이를 위해 대학에서는 관련 산업 전망 및 대학 내 교수자원과 지역 산업과의 관련성을 고려하여 적용하고자 하는 NCS 세분류를 명확히 선정하여야 할 것이다. 이후 NCS 기반 교육과정 개편을 위해 갭분석을 사용하여 개편의 방향과 기준을 보다 객관적이고 합리적으로 수립하여 교육과정명세서에 대한 명확한 논리적 근거를 확보하고 있어야 과정이수형 자격제도에 효율적으로 동참할 수 있을 것이다.
많은 정보통신기술 기업들은 자체적으로 개발한 인공지능 기술을 오픈소스로 공개하였다. 예를 들어, 구글의 TensorFlow, 페이스북의 PyTorch, 마이크로소프트의 CNTK 등 여러 기업들은 자신들의 인공지능 기술들을 공개하고 있다. 이처럼 대중에게 딥러닝 오픈소스 소프트웨어를 공개함으로써 개발자 커뮤니티와의 관계와 인공지능 생태계를 강화하고, 사용자들의 실험, 적용, 개선을 얻을 수 있다. 이에 따라 머신러닝 분야는 급속히 성장하고 있고, 개발자들 또한 여러가지 학습 알고리즘을 재생산하여 각 영역에 활용하고 있다. 하지만 오픈소스 소프트웨어에 대한 다양한 분석들이 이루어진 데 반해, 실제 산업현장에서 딥러닝 오픈소스 소프트웨어를 개발하거나 활용하는데 유용한 연구 결과는 미흡한 실정이다. 따라서 본 연구에서는 딥러닝 프레임워크 사례연구를 통해 해당 프레임워크의 도입 전략을 도출하고자 한다. 기술-조직-환경 프레임워크를 기반으로 기존의 오픈 소스 소프트웨어 도입과 관련된 연구들을 리뷰하고, 이를 바탕으로 두 기업의 성공 사례와 한 기업의 실패 사례를 포함한 총 3 가지 기업의 도입 사례 분석을 통해 딥러닝 프레임워크 도입을 위한 중요한 5가지 성공 요인을 도출하였다: 팀 내 개발자의 지식과 전문성, 하드웨어(GPU) 환경, 데이터 전사 협력 체계, 딥러닝 프레임워크 플랫폼, 딥러닝 프레임워크 도구 서비스. 그리고 도출한 성공 요인을 실현하기 위한 딥러닝 프레임워크의 단계적 도입 전략을 제안하였다: 프로젝트 문제 정의, 딥러닝 방법론이 적합한 기법인지 확인, 딥러닝 프레임워크가 적합한 도구인지 확인, 기업의 딥러닝 프레임워크 사용, 기업의 딥러닝 프레임워크 확산. 본 연구를 통해 각 산업과 사업의 니즈에 따라, 딥러닝 프레임워크를 개발하거나 활용하고자 하는 기업에게 전략적인 시사점을 제공할 수 있을 것이라 기대된다.
본 연구의 목적은 인적자원의 혁신성과 학습지향성이 혁신효과 및 사업성과에 미치는 영향관계를 연구함에 있어 중소기업과 대기업의 차이를 알아보는 것이었다. 다양한 업종의 실무자 479명으로부터 수집한 설문자료를 t-검정, 회귀분석 등을 이용하여 분석하였다. 연구결과에서 대기업은 중소기업에 비해 인적자원의 혁신성, 학습지향성, 혁신효과, 사업성과 면에서 더 높은 수준을 보였다. 혁신효과를 종속변인으로 한 회귀분석 결과에서 인적자원의 혁신성, 학습지향성, 인적자원의 혁신성-학습지향성의 상호 작용 변인이 혁신효과에 영향을 미치는 것으로 나타났고, 기업규모의 조절효과도 확인되어 중소기업의 경우 대기업에 비해 인적자원의 혁신성이 혁신효과에 미치는 영향이 더 크고, 대기업의 경우 중소기업에 비해 학습지향성이 혁신효과에 미치는 영향이 더 크다는 사실을 알 수 있었다. 사업성과를 종속변인으로 한 회귀 분석 결과에서는 학습지향성, 혁신효과, 인적자원의 혁신성-학습지향성의 상호작용 변인이 유의한 영향을 미치는 것으로 나타났으며, 기업규모의 조절효과가 확인되었다. 연구결과를 토대로 기업을 위한 시사점이 제시되었는데, 중소기업과 대기업 모두 혁신효과와 사업성과를 끌어올리기 위해 인적자원의 혁신성과 학습 지향적 문화의 확산에 고루 투자함으로서 성공적인 혁신 상품과 서비스 개발을 이루고, 궁극적으로 사업성과의 향상에 기여할 수 있을 것이다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.