• 제목/요약/키워드: Work assignment

검색결과 192건 처리시간 0.019초

'소쇄원(瀟灑園) 48영'의 의미경관 구성에 있어서 음양오행론적(陰陽五行論的) 의미(意味) (The meaning based on Yin-Yang and Five Elements Principle in Semantic Landscape Composition of 'the Forty Eight Poems of Soswaewon')

  • 장일영;신상섭
    • 한국전통조경학회지
    • /
    • 제31권2호
    • /
    • pp.43-57
    • /
    • 2013
  • 본 연구는 소쇄원 48영의 잠재적 의미경관 구성에 있어서 인간의 본성과 우주적 보편적 질서를 연결하는 사유체계라 할 수 있는 음양오행론(陰陽五行論)적 의미를 추출하는데 목적이 있다. 지금까지의 논의를 정리하면 다음과 같다. 1. 소쇄원 48영에 대한 음양(陰陽)적 경관구성 중 자연과 행위의 관계를 형상화 한 시문은 작중 화자가 산수를 유유자적하게 완상하거나 답사하는 동적인 모습을 그렸다. 주로 양(陽)의 배속을 통해 동 남쪽에서 창작된 경우가 많았다. 반면 정적인 음(陰)의 경관구성이라 할 수 있는 자연과 경물을 형상화 한 시문은 북 서쪽 부근에서 창작된 경우가 많았다. 자연과 인공 경물을 작품으로 형상화 한 시문은 김인후 자신이 경물을 두고 의미경관을 표출하고자 한 경우와 있는 그대로의 사실적 정원의 이미지를 묘사한 경우로 구분 지을 수 있다. 시문은 행위의 표현보다는 경물을 형상화하는데 치중했음을 보여준다. 또한 제1영과 마지막 작품인 '장원제영'의 시문이 모두 같은 구역 안에 있다는 것은 음과 양, 자연의 순환원리가 내재된 종시(終始)적 공간으로 파악했다는 것을 알 수 있었다. 2. 소쇄원 48영에 대한 오행론(五行論)적 경관해석 중 발산(發散)에 의해 결합된 세계로서 목(木), 화(火)기(氣)를 들 수 있다. 먼저 목의 성정을 나타내는 시문은 경물을 형상화 한 시문이 많았으며, 정내의 전체구도에서 동향인 오곡문 구역에 배치되어 있었다. 시문의 내용은 유연하고 소박함 속에서 발생과 곡직(曲直)을 나타내고 있다. 화의 성정을 나타내는 시문은 행위를 형상화 한 시문이 많았으며, 정내에서는 낮에 해가 위치하는 남향인 애양단 구역에서 창작되었다. 모두 양의 속성인 발산과 상승을 특징으로 하는 변(變)의 운동에 오른 상태라 할 수 있다. 3. 소쇄원 48영에 대한 오행론적 경관해석 중 수렴(收斂)에 의해 결합된 세계로서 금(金), 수(水)기를 들 수 있다. 먼저 금의 성정을 나타내는 시문들은 모두 경물을 형상화 한 시문이었고, 정내의 전체구도에서는 서향인 대나무 숲 구역에 배치되어 있음을 알 수 있었다. 사계절 중 가을의 경치를 나타내며, 선비의 단호함과 의로움의 정결을 나타내고 있다. 수의 성정을 표현한 시문은 정원의 가장 상단이라 할 수 있는 북향의 제월당 부근에서 창작되었으며, 시간적으로 저녁 늦은 밤 달맞이를 하는 행위를 형상화 한 시문과 설경의 자연경물을 형상화 한 시문이었다. 모두 수렴에 의한 음으로 화(化)하는 기운을 표현한 시문이라 할 수 있다. 4. 소쇄원 48영에 대한 오행론적 경관해석 중 수렴과 발산의 복합체라 할 수 있는 토(土)의 성정을 나타내는 시문은 내원의 경관 중 중앙에 위치한 광풍각 계류주변이며, 자연현상과 인공경물을 통해 작가의 행위를 매개하고 있다.

폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근 (A Folksonomy Ranking Framework: A Semantic Graph-based Approach)

  • 박현정;노상규
    • Asia pacific journal of information systems
    • /
    • 제21권2호
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.