• 제목/요약/키워드: Words classification

검색결과 463건 처리시간 0.033초

Topic Classification for Suicidology

  • Read, Jonathon;Velldal, Erik;Ovrelid, Lilja
    • Journal of Computing Science and Engineering
    • /
    • 제6권2호
    • /
    • pp.143-150
    • /
    • 2012
  • Computational techniques for topic classification can support qualitative research by automatically applying labels in preparation for qualitative analyses. This paper presents an evaluation of supervised learning techniques applied to one such use case, namely, that of labeling emotions, instructions and information in suicide notes. We train a collection of one-versus-all binary support vector machine classifiers, using cost-sensitive learning to deal with class imbalance. The features investigated range from a simple bag-of-words and n-grams over stems, to information drawn from syntactic dependency analysis and WordNet synonym sets. The experimental results are complemented by an analysis of systematic errors in both the output of our system and the gold-standard annotations.

종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발 (A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine)

  • 황재원;전태균;고영중
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

Preliminary Study of Bioinformatics Patents and Their Classifications Registered in the KIPRIS Database

  • Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • 제10권4호
    • /
    • pp.271-274
    • /
    • 2012
  • Whereas a vast amount of new information on bioinformatics is made available to the public through patents, only a small set of patents are cited in academic papers. A detailed analysis of registered bioinformatics patents, using the existing patent search system, can provide valuable information links between science and technology. However, it is extremely difficult to select keywords to capture bioinformatics patents, reflecting the convergence of several underlying technologies. No single word or even several words are sufficient to identify such patents. The analysis of patent subclasses can provide valuable information. In this paper, I did a preliminary study of the current status of bioinformatics patents and their International Patent Classification (IPC) groups registered in the Korea Intellectual Property Rights Information Service (KIPRIS) database.

이미지 보간을 위한 의사결정나무 분류 기법의 적용 및 구현 (Adopting and Implementation of Decision Tree Classification Method for Image Interpolation)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.55-65
    • /
    • 2020
  • With the development of display hardware, image interpolation techniques have been used in various fields such as image zooming and medical imaging. Traditional image interpolation methods, such as bi-linear interpolation, bi-cubic interpolation and edge direction-based interpolation, perform interpolation in the spatial domain. Recently, interpolation techniques in the discrete cosine transform or wavelet domain are also proposed. Using these various existing interpolation methods and machine learning, we propose decision tree classification-based image interpolation methods. In other words, this paper is about the method of adaptively applying various existing interpolation methods, not the interpolation method itself. To obtain the decision model, we used Weka's J48 library with the C4.5 decision tree algorithm. The proposed method first constructs attribute set and select classes that means interpolation methods for classification model. And after training, interpolation is performed using different interpolation methods according to attributes characteristics. Simulation results show that the proposed method yields reasonable performance.

HANDWRITTEN HANGUL RECOGNITION MODEL USING MULTI-LABEL CLASSIFICATION

  • HANA CHOI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권2호
    • /
    • pp.135-145
    • /
    • 2023
  • Recently, as deep learning technology has developed, various deep learning technologies have been introduced in handwritten recognition, greatly contributing to performance improvement. The recognition accuracy of handwritten Hangeul recognition has also improved significantly, but prior research has focused on recognizing 520 Hangul characters or 2,350 Hangul characters using SERI95 data or PE92 data. In the past, most of the expressions were possible with 2,350 Hangul characters, but as globalization progresses and information and communication technology develops, there are many cases where various foreign words need to be expressed in Hangul. In this paper, we propose a model that recognizes and combines the consonants, medial vowels, and final consonants of a Korean syllable using a multi-label classification model, and achieves a high recognition accuracy of 98.38% as a result of learning with the public data of Korean handwritten characters, PE92. In addition, this model learned only 2,350 Hangul characters, but can recognize the characters which is not included in the 2,350 Hangul characters

실생활 문장제의 해결과정에 나타나는 오류유형 분석 (The analysis of mathematics error type that appears from the process of solving problem related to real life)

  • 박장희;유시규;이중권
    • 한국학교수학회논문집
    • /
    • 제15권4호
    • /
    • pp.699-718
    • /
    • 2012
  • 학생들이 문장으로 이루어진 문제를 해결과정에서 발생하는 오류의 유형을 분류하고, 각각의 오류 유형을 보인 학생들의 면담(인터뷰)을 통하여 오류를 범하게 된 요인을 분석하였다. 연구결과에 따라 나타난 대표적인 오류 유형은 '문항 이해의 부족', '풀이과정의 오류', '정리나 정의에 대한 왜곡된 이해', '이기과정의 오류', '기술적 오류', '풀이과정 생략' 등으로 나타났다. 또한 일부 학생들은 문장제에 대한 부담감으로 문제를 해결하기보다는 포기하는 현상이 나타났으며, 학생들은 문장으로 이루어진 문제를 해결을 하기 위해서 무엇보다 문제에 대한 이해가 필요한데, 이 부분이 절대적으로 부족하여 문제에서 주어진 자료를 자의적으로 판단하고 활용하는 경향이 짙게 보였다. 교사는 학생들이 문장제 문제 해결과정에서 발생하는 오류를 미리 파악하고 이를 보안할 수 있는 교수-학습방법으로 학생들을 지도한다면 오류를 사전에 예방하여 발생빈도를 줄일 수 있고, 학생들로 하여금 효과적인 학습이 이루어 질 수 있을 것이다.

  • PDF

A Study on the Classification of Unstructured Data through Morpheme Analysis

  • Kim, SungJin;Choi, NakJin;Lee, JunDong
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.105-112
    • /
    • 2021
  • 빅데이터 시대에 접어들며 데이터에 대한 관심이 폭발적으로 늘어나고 있다. 특히, 인터넷 및 소셜미디어의 발전은 새로운 데이터들의 생성으로 연결되어 빅데이터와 인공지능 시대의 실현과 융합 기술의 새로운 장을 열 수 있게 되었으며, 과거에는 프로그램으로 다루지 못하던 데이터에 대한 분석 요구가 많이 발생하고 있다. 본 논문에서는 빅데이터 시대에서 많이 요구되는 비정형 데이터에 대한 분류를 위하여 분석 모델을 설계하고 이를 검증하였다. 데이터는 디비피아의 논문 요약과 주제어, 그리고 부주제 어를 크롤링하였으며, 코엔엘피의 데이터 사전을 이용해 데이터베이스를 생성하고, 형태소 분석을 통하여 단어의 토큰화 과정을 수행하였다. 또한, 카이스트의 9 품사 분류 체계를 이용해 명사를 추출하고, TF-IDF 값을 생성하였으며, 학습 데이터와 Y 값을 결합하여 분석 데이터 셋을 생성하였다. 이와 같이 생성된 분석 데이터 셋에 랜덤 포레스트와 서포트 벡터 머신 그리고 의사결정트리, 이렇게 세 가지 분석 알고리즘을 적용하여 분류의 적정성을 측정하였다. 본 논문에서 제안한 분류 모델 기법은 논문 분류 외에도 민원 분류 분석 및 텍스트 관련 분석 등 다양한 분야에 유용하게 사용될 수 있다.

질문대답 아카이브에서 어휘 연관성을 이용한 질문 분류 (Question Classification Based on Word Association for Question and Answer Archives)

  • 김설영;이경순
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.327-332
    • /
    • 2010
  • 보통 두 세 개의 어휘로 구성된 질문 분류에서 어휘의 다양한 표현으로 인한 어휘 불일치문제는 성능 저하의 주요 원인이다. 따라서 질문 분류에서 어휘 사이의 연관성을 반영하는 것이 필수적이다. 본 논문에서는 같은 범주의 질문-질문 쌍들에 대해 계산한 어휘 번역확률을 번역기반 언어모델에 반영하여 질문을 분류하는 방법을 제안한다. 실험에서 야후!앤써 질문대답 아카이브를 이용해서 전체 질문-대답 쌍들에 대해서 번역확률을 계산하는 것보다 같은 범주에 속하는 질문-질문 쌍들에 대해서 번역확률을 계산하는 것이 질문 분류에서 더 좋은 번역확률인 것을 증명한다.

Finding a plan to improve recognition rate using classification analysis

  • Kim, SeungJae;Kim, SungHwan
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.184-191
    • /
    • 2020
  • With the emergence of the 4th Industrial Revolution, core technologies that will lead the 4th Industrial Revolution such as AI (artificial intelligence), big data, and Internet of Things (IOT) are also at the center of the topic of the general public. In particular, there is a growing trend of attempts to present future visions by discovering new models by using them for big data analysis based on data collected in a specific field, and inferring and predicting new values with the models. In order to obtain the reliability and sophistication of statistics as a result of big data analysis, it is necessary to analyze the meaning of each variable, the correlation between the variables, and multicollinearity. If the data is classified differently from the hypothesis test from the beginning, even if the analysis is performed well, unreliable results will be obtained. In other words, prior to big data analysis, it is necessary to ensure that data is well classified according to the purpose of analysis. Therefore, in this study, data is classified using a decision tree technique and a random forest technique among classification analysis, which is a machine learning technique that implements AI technology. And by evaluating the degree of classification of the data, we try to find a way to improve the classification and analysis rate of the data.

Text Classification Using Parallel Word-level and Character-level Embeddings in Convolutional Neural Networks

  • Geonu Kim;Jungyeon Jang;Juwon Lee;Kitae Kim;Woonyoung Yeo;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • 제29권4호
    • /
    • pp.771-788
    • /
    • 2019
  • Deep learning techniques such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) show superior performance in text classification than traditional approaches such as Support Vector Machines (SVMs) and Naïve Bayesian approaches. When using CNNs for text classification tasks, word embedding or character embedding is a step to transform words or characters to fixed size vectors before feeding them into convolutional layers. In this paper, we propose a parallel word-level and character-level embedding approach in CNNs for text classification. The proposed approach can capture word-level and character-level patterns concurrently in CNNs. To show the usefulness of proposed approach, we perform experiments with two English and three Korean text datasets. The experimental results show that character-level embedding works better in Korean and word-level embedding performs well in English. Also the experimental results reveal that the proposed approach provides better performance than traditional CNNs with word-level embedding or character-level embedding in both Korean and English documents. From more detail investigation, we find that the proposed approach tends to perform better when there is relatively small amount of data comparing to the traditional embedding approaches.