• 제목/요약/키워드: Words classification

검색결과 463건 처리시간 0.022초

Development of Sensibility Vocabulary Classification System for Sensibility Evaluation of Visitors According to Forest Environment

  • Lee, Jeong-Do;Joung, Dawou;Hong, Sung-Jun;Kim, Da-Young;Park, Bum-Jin
    • 인간식물환경학회지
    • /
    • 제22권2호
    • /
    • pp.209-217
    • /
    • 2019
  • Generally human sensibility is expressed in a certain language. To discover the sensibility of visitors in relation to the forest environment, it is first necessary to determine their exact meanings. Furthermore, it is necessary to sort these terms according to their meanings based on an appropriate classification system. This study attempted to develop a classification system for forest sensibility vocabulary by extracting Korean words used by forest visitors to express their sensibilities in relation to the forest environment, and established the structure of the system to classify the accumulated vocabulary. For this purpose, we extracted forest sensibility words based on literature review of experiences reported in the past as well as interviews of forest visitors, and categorized the words by meanings using the Standard Korean Language Dictionary maintained by the National Institute of the Korean Language. Next, the classification system for these words was established with reference to the classification system for vocabulary in the Korean language examined in previous studies of Korean language and literature. As a result, 137 forest sensibility words were collected using a documentary survey, and we categorized these words into four types: emotion, sense, evaluation, and existence. Categorizing the collected forest sensibility words based on this Korean language classification system resulted in the extraction of 40 representative sensibility words. This experiment enabled us to determine from where our sensibilities that find expressions in the forest are derived, that is, from sight, hearing, smell, taste, or touch, along with various other aspects of how our human sensibilities are expressed such as whether the subject of a word is person-centered or object-centered. We believe that the results of this study can serve as foundational data about forest sensibility.

Object Classification based on Weakly Supervised E2LSH and Saliency map Weighting

  • Zhao, Yongwei;Li, Bicheng;Liu, Xin;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.364-380
    • /
    • 2016
  • The most popular approach in object classification is based on the bag of visual-words model, which has several fundamental problems that restricting the performance of this method, such as low time efficiency, the synonym and polysemy of visual words, and the lack of spatial information between visual words. In view of this, an object classification based on weakly supervised E2LSH and saliency map weighting is proposed. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is employed to generate a group of weakly randomized visual dictionary by clustering SIFT features of the training dataset, and the selecting process of hash functions is effectively supervised inspired by the random forest ideas to reduce the randomcity of E2LSH. Secondly, graph-based visual saliency (GBVS) algorithm is applied to detect the saliency map of different images and weight the visual words according to the saliency prior. Finally, saliency map weighted visual language model is carried out to accomplish object classification. Experimental results datasets of Pascal 2007 and Caltech-256 indicate that the distinguishability of objects is effectively improved and our method is superior to the state-of-the-art object classification methods.

자동 색인을 이용한 문서의 분류 (Classification of Documents using Automatic Indexing)

  • 신진섭;장수진
    • 한국컴퓨터정보학회논문지
    • /
    • 제4권1호
    • /
    • pp.21-27
    • /
    • 1999
  • 본 논문은 단어들의 유사도를 이용하여 문서들을 자동으로 분류하는 새로운 방법을 제안한다. 단어들 중에서 의미있는 단어들을 찾아내기 위하여 자동색인 방법을 이용하였으며. 두 번째로 본 논문에서 제안한 확률 모델을 이용하여 각 단어들의 문서와의 연관관계를 분석하였다. 이를 토대로 분류를 가능하게 하기 위한 프로파일을 생성한다. 본 논문에서는 유전자 알고리즘과 신경망에 관련된 10개의 문서에 대하여 실험하여 유전자 알고리즘과 신경망에 해당하는 프로파일을 생성하였다.

  • PDF

식물학문헌을 위한 자동분류시스템의 개발 (Developing an Automatic Classification System for Botanical Literatures)

  • 김정현;이경호
    • 한국도서관정보학회지
    • /
    • 제32권4호
    • /
    • pp.99-117
    • /
    • 2001
  • 본 연구는 분류자동화를 위해 이미 연구된 바 있는 농학 및 의학분야의 AutoBC 시스템에 대한 계속적인 연구의 일환으로 식물학분야의 문헌에 대해 분류자동화가 가능한지의 여부를 CC의 원리를 응용하여 실험 및 검증한 것이다. 분류자동화를 위한 데이터베이스는 원통형과 행렬식의 원리에 의해 설계되었으며, 문헌의 표제나 키워드를 입력하여 자동적인 주제인지 및 분류기호가 생성될 수 있는 윈도우용 자동분류시스템을 새로이 개발하여 실험하였다.

  • PDF

Effects of Preprocessing on Text Classification in Balanced and Imbalanced Datasets

  • Mehmet F. Karaca
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.591-609
    • /
    • 2024
  • In this study, preprocessings with all combinations were examined in terms of the effects on decreasing word number, shortening the duration of the process and the classification success in balanced and imbalanced datasets which were unbalanced in different ratios. The decreases in the word number and the processing time provided by preprocessings were interrelated. It was seen that more successful classifications were made with Turkish datasets and English datasets were affected more from the situation of whether the dataset is balanced or not. It was found out that the incorrect classifications, which are in the classes having few documents in highly imbalanced datasets, were made by assigning to the class close to the related class in terms of topic in Turkish datasets and to the class which have many documents in English datasets. In terms of average scores, the highest classification was obtained in Turkish datasets as follows: with not applying lowercase, applying stemming and removing stop words, and in English datasets as follows: with applying lowercase and stemming, removing stop words. Applying stemming was the most important preprocessing method which increases the success in Turkish datasets, whereas removing stop words in English datasets. The maximum scores revealed that feature selection, feature size and classifier are more effective than preprocessing in classification success. It was concluded that preprocessing is necessary for text classification because it shortens the processing time and can achieve high classification success, a preprocessing method does not have the same effect in all languages, and different preprocessing methods are more successful for different languages.

Topic Extraction and Classification Method Based on Comment Sets

  • Tan, Xiaodong
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.329-342
    • /
    • 2020
  • In recent years, emotional text classification is one of the essential research contents in the field of natural language processing. It has been widely used in the sentiment analysis of commodities like hotels, and other commentary corpus. This paper proposes an improved W-LDA (weighted latent Dirichlet allocation) topic model to improve the shortcomings of traditional LDA topic models. In the process of the topic of word sampling and its word distribution expectation calculation of the Gibbs of the W-LDA topic model. An average weighted value is adopted to avoid topic-related words from being submerged by high-frequency words, to improve the distinction of the topic. It further integrates the highest classification of the algorithm of support vector machine based on the extracted high-quality document-topic distribution and topic-word vectors. Finally, an efficient integration method is constructed for the analysis and extraction of emotional words, topic distribution calculations, and sentiment classification. Through tests on real teaching evaluation data and test set of public comment set, the results show that the method proposed in the paper has distinct advantages compared with other two typical algorithms in terms of subject differentiation, classification precision, and F1-measure.

문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안 (Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity)

  • 이민석;양석우;이홍주
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.105-122
    • /
    • 2019
  • 텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.

Nearest-Neighbors Based Weighted Method for the BOVW Applied to Image Classification

  • Xu, Mengxi;Sun, Quansen;Lu, Yingshu;Shen, Chenming
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1877-1885
    • /
    • 2015
  • This paper presents a new Nearest-Neighbors based weighted representation for images and weighted K-Nearest-Neighbors (WKNN) classifier to improve the precision of image classification using the Bag of Visual Words (BOVW) based models. Scale-invariant feature transform (SIFT) features are firstly extracted from images. Then, the K-means++ algorithm is adopted in place of the conventional K-means algorithm to generate a more effective visual dictionary. Furthermore, the histogram of visual words becomes more expressive by utilizing the proposed weighted vector quantization (WVQ). Finally, WKNN classifier is applied to enhance the properties of the classification task between images in which similar levels of background noise are present. Average precision and absolute change degree are calculated to assess the classification performance and the stability of K-means++ algorithm, respectively. Experimental results on three diverse datasets: Caltech-101, Caltech-256 and PASCAL VOC 2011 show that the proposed WVQ method and WKNN method further improve the performance of classification.

확장된 벡터 공간 모델을 이용한 한국어 문서 분류 방안 (Korean Document Classification Using Extended Vector Space Model)

  • 이상곤
    • 정보처리학회논문지B
    • /
    • 제18B권2호
    • /
    • pp.93-108
    • /
    • 2011
  • 본 논문에서는 한국어 문서의 분류 정밀도 향상을 위해 애매어와 해소어 정보를 이용한 확장된 벡터 공간 모델을 제안하였다. 벡터 공간 모델에 사용된 벡터는 같은 정도의 가중치를 갖는 축이 하나 더 존재하지만, 기존의 방법은 그 축에 아무런 처리가 이루어지지 않았기 때문에 벡터끼리의 비교를 할 때 문제가 발생한다. 같은 가중치를 갖는 축이 되는 단어를 애매어라 정의하고, 단어와 분야 사이의 상호정보량을 계산하여 애매어를 결정하였다. 애매어에 의해 애매성을 해소하는 단어를 해소어라 정의하고, 애매어와 동일한 문서에서 출현하는 단어 중에서 상호정보량을 계산하여 해소어의 세기를 결정하였다. 본 논문에서는 애매어와 해소어를 이용하여 벡터의 차원을 확장하여 문서 분류의 정밀도를 향상시키는 방법을 제안하였다.

Language Identification in Handwritten Words Using a Convolutional Neural Network

  • Tung, Trieu Son;Lee, Gueesang
    • International Journal of Contents
    • /
    • 제13권3호
    • /
    • pp.38-42
    • /
    • 2017
  • Documents of the last few decades typically include more than one kind of language, so linguistic classification of each word is essential, especially in terms of English and Korean in handwritten documents. Traditional methods mostly use conventional features of structural or stroke features, but sometimes they fail to identify many characteristics of words because of complexity introduced by handwriting. Therefore, traditional methods lead to a considerably more-complicated task and naturally lead to possibly poor results. In this study, convolutional neural network (CNN) is used for classification of English and Korean handwritten words in text documents. Experimental results reveal that the proposed method works effectively compared to previous methods.