• 제목/요약/키워드: Words Error

검색결과 260건 처리시간 0.023초

측풍 착륙에 관한 실증적 연구;B747-400의 착륙 사례를 중심으로 (The Empirical Study on the Crosswind Landings)

  • 김칠영;문봉섭
    • 한국항공운항학회지
    • /
    • 제12권2호
    • /
    • pp.71-81
    • /
    • 2004
  • There are four methods of landing of B747-400 during the crosswind condition. Pilots can choose either one of them. Those are: Sideslip/Wing low, De-Crab during Flare, Touchdown in Crab, Combining Crab and Sideslip. They decide to use one method by what they have learnt before. During the flight, the pilots choose the method, which depends on the weather forecast, and then try to land according to it. However, the weather condition always changes. In other words, the weather during planning and landing can be different, which can provide a difference between the previously expected situation and the actual one. Therefore, it is very important for the pilots to have the situation awareness. This study shows the direction and the prevention to avoid those errors, which are based on actual landing data of B747-400.

  • PDF

Domain Adaptation Image Classification Based on Multi-sparse Representation

  • Zhang, Xu;Wang, Xiaofeng;Du, Yue;Qin, Xiaoyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2590-2606
    • /
    • 2017
  • Generally, research of classical image classification algorithms assume that training data and testing data are derived from the same domain with the same distribution. Unfortunately, in practical applications, this assumption is rarely met. Aiming at the problem, a domain adaption image classification approach based on multi-sparse representation is proposed in this paper. The existences of intermediate domains are hypothesized between the source and target domains. And each intermediate subspace is modeled through online dictionary learning with target data updating. On the one hand, the reconstruction error of the target data is guaranteed, on the other, the transition from the source domain to the target domain is as smooth as possible. An augmented feature representation produced by invariant sparse codes across the source, intermediate and target domain dictionaries is employed for across domain recognition. Experimental results verify the effectiveness of the proposed algorithm.

변환부호화된 영상신호에 대한 채널 오류의 영향 (Effects of Channel Errors on Transform-Coded Image Signals)

  • 백종기;문상재
    • 한국통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.216-223
    • /
    • 1987
  • 본 논문에서는 영상신호의 변환부호화 시스템에서 통계적으로 독립적인 채널 전송오류의 영향을 MSE로 계산하였다. 양자화가 입력신호의 확률밀도함수를 Laplacian, Gaussian, 그리고 uniform분포로 가정하였으며, 양자화된 신호의 부호화시 사용되는 코드로는 NBC, FBC, MDC 및 Gray code가 고려되었다. 본 연구의 결과들로부터, 양자화기입력신호의 확률밀도함수에 따라 어떠한 코드로 부호화하는 것이 채널 전송오류의 영향을 작게 받는가를 알 수 있다.

  • PDF

Mellin 변환을 이용한 격리 단어 인식 (An Isolated Word Recognition Using the Mellin Transform)

  • 김진만;이상욱;고세문
    • 대한전자공학회논문지
    • /
    • 제24권5호
    • /
    • pp.905-913
    • /
    • 1987
  • This paper presents a speaker dependent isolated digit recognition algorithm using the Mellin transform. Since the Mellin transform converts a scale information into a phase information, attempts have been made to utilize this scale invariance property of the Mellin transform in order to alleviate a time-normalization procedure required for a speech recognition. It has been found that good results can be obtained by taking the Mellin transform to the features such as a ZCR, log energy, normalized autocorrelation coefficients, first predictor coefficient and normalized prediction error. We employed a difference function for evaluating a similarity between two patterns. When the proposed algorithm was tested on Korean digit words, a recognition rate of 83.3% was obtained. The recognition accuracy is not compatible with the other technique such as LPC distance however, it is believed that the Mellin transform can effectively perform the time-normalization processing for the speech recognition.

  • PDF

대화체 연속음성 인식을 위한 언어모델 적응 (Language Model Adaptation for Conversational Speech Recognition)

  • 박영희;정민화
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 5월 학술대회지
    • /
    • pp.83-86
    • /
    • 2003
  • This paper presents our style-based language model adaptation for Korean conversational speech recognition. Korean conversational speech is observed various characteristics of content and style such as filled pauses, word omission, and contraction as compared with the written text corpora. For style-based language model adaptation, we report two approaches. Our approaches focus on improving the estimation of domain-dependent n-gram models by relevance weighting out-of-domain text data, where style is represented by n-gram based tf*idf similarity. In addition to relevance weighting, we use disfluencies as predictor to the neighboring words. The best result reduces 6.5% word error rate absolutely and shows that n-gram based relevance weighting reflects style difference greatly and disfluencies are good predictor.

  • PDF

초등학생의 연산법칙 이해 수준과 학습 방안 연구 (A Study on the Understanding and Instructional Methods of Arithmetic Rules for Elementary School Students)

  • 김판수
    • East Asian mathematical journal
    • /
    • 제38권2호
    • /
    • pp.257-275
    • /
    • 2022
  • Recently, there are studies the argument that arithmetic rules established by the four fundamental arithmetic operations, in other words, commutative laws, associative laws, distributive laws, should be explicitly described in mathematics textbooks and the curriculum. These rules are currently implicitly presented or omitted from textbooks, but they contain important principles that foster mathematical thinking. This study aims to evaluate the current level of understanding of these computation rules and provide implications for the curriculum and textbook writing. To this end, the correct answer ratio of the five arithmetic rules for 1-4 grades 398 in five elementary schools was investigated and the type of error was analyzed and presented, and the subject to learn these rules and the points to be noted in teaching and learning were also presented. These results will help to clarify the achievement criteria and learning contents of the calculation rules, which were implicitly presented in existing national textbooks, in a new 2022 revised curriculum.

CPU 기반의 딥러닝 컨볼루션 신경망을 이용한 이륜 차량 번호판 인식 알고리즘 (Twowheeled Motor Vehicle License Plate Recognition Algorithm using CPU based Deep Learning Convolutional Neural Network)

  • 김진호
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.127-136
    • /
    • 2023
  • Many research results on the traffic enforcement of illegal driving of twowheeled motor vehicles using license plate recognition are introduced. Deep learning convolutional neural networks can be used for character and word recognition of license plates because of better generalization capability compared to traditional Backpropagation neural networks. In the plates of twowheeled motor vehicles, the interdependent government and city words are included. If we implement the mutually independent word recognizers using error correction rules for two word recognition results, efficient license plate recognition results can be derived. The CPU based convolutional neural network without library under real time processing has an advantage of low cost real application compared to GPU based convolutional neural network with library. In this paper twowheeled motor vehicle license plate recognition algorithm is introduced using CPU based deep-learning convolutional neural network. The experimental results show that the proposed plate recognizer has 96.2% success rate for outdoor twowheeled motor vehicle images in real time.

A Tree Regularized Classifier-Exploiting Hierarchical Structure Information in Feature Vector for Human Action Recognition

  • Luo, Huiwu;Zhao, Fei;Chen, Shangfeng;Lu, Huanzhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1614-1632
    • /
    • 2017
  • Bag of visual words is a popular model in human action recognition, but usually suffers from loss of spatial and temporal configuration information of local features, and large quantization error in its feature coding procedure. In this paper, to overcome the two deficiencies, we combine sparse coding with spatio-temporal pyramid for human action recognition, and regard this method as the baseline. More importantly, which is also the focus of this paper, we find that there is a hierarchical structure in feature vector constructed by the baseline method. To exploit the hierarchical structure information for better recognition accuracy, we propose a tree regularized classifier to convey the hierarchical structure information. The main contributions of this paper can be summarized as: first, we introduce a tree regularized classifier to encode the hierarchical structure information in feature vector for human action recognition. Second, we present an optimization algorithm to learn the parameters of the proposed classifier. Third, the performance of the proposed classifier is evaluated on YouTube, Hollywood2, and UCF50 datasets, the experimental results show that the proposed tree regularized classifier obtains better performance than SVM and other popular classifiers, and achieves promising results on the three datasets.

차원별 Eigenvoice와 화자적응 모드 선택에 기반한 고속화자적응 성능 향상 (Performance Improvement of Fast Speaker Adaptation Based on Dimensional Eigenvoice and Adaptation Mode Selection)

  • 송화전;이윤근;김형순
    • 한국음향학회지
    • /
    • 제22권1호
    • /
    • pp.48-53
    • /
    • 2003
  • Eigenvoice 방법은 고속화자적응에 적합하다고 알려져 있지만, 이 방법은 발화수가 증가하더라도 추가적인 인식성능향상이 이루어지지 않는 단점이 있다. 본 논문에서는 이 문제를 해결하기 위해 음성 특징벡터의 차원별로 eigenvoice의 가중치를 구하여 적응시키는 방법과 또한 적응 데이터 수에 따라 높은 인식률을 얻는 적응 방식을 선택하는 방식을 제안한다. 화자독립모델 및 eigenvoice들을 구성하기 위해 POW (Phonetically Optimized Words)데이터베이스를 사용하였으며, PBW(Phonetically Balanced Words) 452단어 중50개까지 발화 수를 변화시키면서 교사방식 (Supervised mode)로 적응에 사용하고 나머지 중 400개를 인식실험에 사용하였다. 차원별 eigenvoice 방법이 발화수가 증가함에 따라 기존의 eigenvoice 나 MLLR 방법보다 높은 성능을 보였으며, eigenvoice와 차원별 eigenvoice방법 사이의 적응 모드 선택을 통해 기존의 eigenvoice 방식에 비해 최고 26%의 단어 오인식률 감소를 얻었다.

음성인식 기반 응급상황관제 (Emergency dispatching based on automatic speech recognition)

  • 이규환;정지오;신대진;정민화;강경희;장윤희;장경호
    • 말소리와 음성과학
    • /
    • 제8권2호
    • /
    • pp.31-39
    • /
    • 2016
  • In emergency dispatching at 119 Command & Dispatch Center, some inconsistencies between the 'standard emergency aid system' and 'dispatch protocol,' which are both mandatory to follow, cause inefficiency in the dispatcher's performance. If an emergency dispatch system uses automatic speech recognition (ASR) to process the dispatcher's protocol speech during the case registration, it instantly extracts and provides the required information specified in the 'standard emergency aid system,' making the rescue command more efficient. For this purpose, we have developed a Korean large vocabulary continuous speech recognition system for 400,000 words to be used for the emergency dispatch system. The 400,000 words include vocabulary from news, SNS, blogs and emergency rescue domains. Acoustic model is constructed by using 1,300 hours of telephone call (8 kHz) speech, whereas language model is constructed by using 13 GB text corpus. From the transcribed corpus of 6,600 real telephone calls, call logs with emergency rescue command class and identified major symptom are extracted in connection with the rescue activity log and National Emergency Department Information System (NEDIS). ASR is applied to emergency dispatcher's repetition utterances about the patient information. Based on the Levenshtein distance between the ASR result and the template information, the emergency patient information is extracted. Experimental results show that 9.15% Word Error Rate of the speech recognition performance and 95.8% of emergency response detection performance are obtained for the emergency dispatch system.