• 제목/요약/키워드: Word language model

검색결과 263건 처리시간 0.024초

대용량 연속 음성 인식 시스템에서의 코퍼스 선별 방법에 의한 언어모델 설계 (A Corpus Selection Based Approach to Language Modeling for Large Vocabulary Continuous Speech Recognition)

  • 오유리;윤재삼;김홍국
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.103-106
    • /
    • 2005
  • In this paper, we propose a language modeling approach to improve the performance of a large vocabulary continuous speech recognition system. The proposed approach is based on the active learning framework that helps to select a text corpus from a plenty amount of text data required for language modeling. The perplexity is used as a measure for the corpus selection in the active learning. From the recognition experiments on the task of continuous Korean speech, the speech recognition system employing the language model by the proposed language modeling approach reduces the word error rate by about 6.6 % with less computational complexity than that using a language model constructed with randomly selected texts.

  • PDF

양방향 장단기 메모리 신경망을 이용한 욕설 검출 (Abusive Detection Using Bidirectional Long Short-Term Memory Networks)

  • 나인섭;이신우;이재학;고진광
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.35-45
    • /
    • 2019
  • 욕설과 비속어를 포함한 악성 댓글에 대한 피해는 최근 언론에 나오는 연애인의 자살뿐만 아니라 사회 전반에서 다양한 형태로 증가하고 있다. 이 논문에서는 양방향 장단기 메모리 신경망 모델을 이용하여 욕설을 검출하는 기법을 제시하였다. 웹 크룰러를 통해 웹상의 댓글을 수집하고, 영어나 특수문자 등의 사용하지 않은 글에 대해 불용어 처리를 하였다. 불용어 처리된 댓글에 대해 문장의 전·후 관계를 고려한 양방향 장단기 메모리 신경망 모델을 적용하여 욕설 여부를 판단하고 검출하였다. 양방향 장단기 메모리 신경망을 사용하기 위해 검출된 댓글에 대해 형태소 분석과 벡터화 과정을 거쳤으며 각 단어들에 욕설 해당 여부를 라벨링하여 진행하였다. 실험 결과 정제하고 수집된 총 9,288개의 댓글에 대해 88.79%의 성능을 나타내었다.

  • PDF

분산 메모리 다중프로세서 환경에서의 병렬 음성인식 모델 (A Parallel Speech Recognition Model on Distributed Memory Multiprocessors)

  • 정상화;김형순;박민욱;황병한
    • 한국음향학회지
    • /
    • 제18권5호
    • /
    • pp.44-51
    • /
    • 1999
  • 본 논문에서는 음성과 자연언어의 통합처리를 위한 효과적인 병렬계산모델을 제안한다. 음소모델은 연속 Hidden Markov Model(HMM)에 기반을 둔 문맥종속형 음소를 사용하며, 언어모델은 지식베이스를 기반으로 한다. 또한 지식베이스를 구성하기 위해 계층구조의 semantic network과 병렬 marker-passing을 추론 메카니즘으로 쓰는 memory-based parsing 기술을 사용한다. 본 연구의 병렬 음성인식 알고리즘은 분산메모리 MIMD(Multiple Instruction Multiple Data) 구조의 다중 Transputer 시스템을 이용하여 구현되었다. 실험결과, 본 연구의 지식베이스 기반 음성인식 시스템의 인식률이 word network 기반 음성인식 시스템보다 높게 나타났으며 code-phoneme 통계정보를 활용하여 인식성능의 향상도 얻을 수 있었다. 또한, 성능향상도(speedup) 관련 실험들을 통하여 병렬 음성인식 시스템의 실시간 구현 가능성을 확인하였다.

  • PDF

다양한 연속밀도 함수를 갖는 HMM에 대한 우리말 음성인식에 관한 연구 (The Study of Korean Speech Recognition for Various Continue HMM)

  • 우인성;신좌철;강흥순;김석동
    • 전기전자학회논문지
    • /
    • 제11권2호
    • /
    • pp.89-94
    • /
    • 2007
  • 본 논문은 연속 밀도 함수를 갖는 HMM별 한국어 연속 음성인식에 관한 연구이다. 여기서 우리는 밀도 함수가 2개에서 44개까지 갖는 연속 HMM모델에서 가장 효율적인 연속 음성인식을 위한 방법을 제시한다. 음성 모델은 36개로 구성한 기본음소를 사용한 CI-Model과 3,000개로 구성한 확장음소를 사용한 CD-Model을 사용하였고, 언어 모델은 N-gram을 이용하여 처리하였다. 이 방법을 사용하여 500개의 문장과 6,486개의 단어에 대하여 화자 독립으로 CI Model에서 최고 94.4%의 단어인식률과 64.6%의 문장인식률을 얻었고, CD Model에서는98.2%의 단어인식률과 73.6%의 문장인식률을 안정적으로 얻었다.

  • PDF

WPM(Word Piece Model)을 활용한 구글 플레이스토어 앱의 댓글 감정 분석 연구 (A Study on the Sentiment analysis of Google Play Store App Comment Based on WPM(Word Piece Model))

  • 박재훈;구명완
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.291-295
    • /
    • 2016
  • 본 논문에서는 한국어 기본 유니트 단위로 WPM을 활용한 구글 플레이 스토어 앱의 댓글 감정분석을 수행하였다. 먼저 자동 띄어쓰기 시스템을 적용한 후, 어절단위, 형태소 분석기, WPM을 각각 적용하여 모델을 생성하고, 로지스틱 회귀(Logistic Regression), 소프트맥스 회귀(Softmax Regression), 서포트 벡터머신(Support Vector Machine, SVM)등의 알고리즘을 이용하여 댓글 감정(긍정과 부정)을 비교 분석하였다. 그 결과 어절단위, 형태소 분석기보다 WPM이 최대 25%의 향상된 결과를 얻었다. 또한 분류 과정에서 로지스틱회귀, 소프트맥스 회귀보다는 SVM 성능이 우수했으며, SVM의 기본 파라미터({'kernel':('linear'), 'c':[4]})보다 최적의 파라미터를 적용({'kernel': ('linear','rbf', 'sigmoid', 'poly'), 'C':[0.01, 0.1, 1.4.5]} 하였을 때, 최대 91%의 성능이 나타났다.

  • PDF

Word Embedding 자질을 이용한 한국어 개체명 인식 및 분류 (Korean Named Entity Recognition and Classification using Word Embedding Features)

  • 최윤수;차정원
    • 정보과학회 논문지
    • /
    • 제43권6호
    • /
    • pp.678-685
    • /
    • 2016
  • 한국어 개체명 인식에 다양한 연구가 있었지만, 영어 개체명 인식에 비해 자질이 부족한 문제를 가지고 있다. 본 논문에서는 한국어 개체명 인식의 자질 부족 문제를 해결하기 위해 word embedding 자질을 개체명 인식에 사용하는 방법을 제안한다. CBOW(Continuous Bag-of-Words) 모델을 이용하여 word vector를 생성하고, word vector로부터 K-means 알고리즘을 이용하여 군집 정보를 생성한다. word vector와 군집 정보를 word embedding 자질로써 CRFs(Conditional Random Fields)에 사용한다. 실험 결과 TV 도메인과 Sports 도메인, IT 도메인에서 기본 시스템보다 각각 1.17%, 0.61%, 1.19% 성능이 향상되었다. 또한 제안 방법이 다른 개체명 인식 및 분류 시스템보다 성능이 향상되는 것을 보여 그 효용성을 입증했다.

한국어 단어 및 문장 분류 태스크를 위한 분절 전략의 효과성 연구 (A Comparative study on the Effectiveness of Segmentation Strategies for Korean Word and Sentence Classification tasks)

  • 김진성;김경민;손준영;박정배;임희석
    • 한국융합학회논문지
    • /
    • 제12권12호
    • /
    • pp.39-47
    • /
    • 2021
  • 효과적인 분절을 통한 양질의 입력 자질 구성은 언어모델의 문장 이해력을 향상하기 위한 필수적인 단계이다. 입력 자질의 품질 제고는 세부 태스크의 성능과 직결된다. 본 논문은 단어와 문장 분류 관점에서 한국어의 언어적 특징을 효과적으로 반영하는 분절 전략을 비교 연구한다. 분절 유형은 언어학적 단위에 따라 어절, 형태소, 음절, 자모 네 가지로 분류하며, RoBERTa 모델 구조를 활용하여 사전학습을 진행한다. 각 세부 태스크를 분류 단위에 따라 문장 분류 그룹과 단어 분류 그룹으로 구분 지어 실험함으로써, 그룹 내 경향성 및 그룹 간 차이에 대한 분석을 진행한다. 실험 결과에 따르면, 문장 분류에서는 단위의 언어학적 분절 전략을 적용한 모델이 타 분절 전략 대비 최대 NSMC: +0.62%, KorNLI: +2.38%, KorSTS: +2.41% 높은 성능을, 단어 분류에서는 음절 단위의 분절 전략이 최대 NER: +0.7%, SRL: +0.61% 높은 성능을 보임으로써, 각 분류 그룹에서의 효과성을 보여준다.

다양한 앙상블 알고리즘을 이용한 한국어 의존 구문 분석 (Korean Dependency Parsing Using Various Ensemble Models)

  • 조경철;김주완;김균엽;박성진;강상우
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.543-545
    • /
    • 2019
  • 본 논문은 최신 한국어 의존 구문 분석 모델(Korean dependency parsing model)들과 다양한 앙상블 모델(ensemble model)들을 결합하여 그 성능을 분석한다. 단어 표현은 미리 학습된 워드 임베딩 모델(word embedding model)과 ELMo(Embedding from Language Model), Bert(Bidirectional Encoder Representations from Transformer) 그리고 다양한 추가 자질들을 사용한다. 또한 사용된 의존 구문 분석 모델로는 Stack Pointer Network Model, Deep Biaffine Attention Parser와 Left to Right Pointer Parser를 이용한다. 최종적으로 각 모델의 분석 결과를 앙상블 모델인 Bagging 기법과 XGBoost(Extreme Gradient Boosting) 이용하여 최적의 모델을 제안한다.

  • PDF

PWIM 활용 한국어 초급 어휘교육 (Vocabulary Education for Korean Beginner Level Using PWIM)

  • 정연숙;이병운
    • 한국어교육
    • /
    • 제29권3호
    • /
    • pp.325-344
    • /
    • 2018
  • The purpose of this study is to summarize PWIM (Picture Words Inductive Model) which is one of learner-centered vocabulary teaching-learning models, and suggest ways to implement them in Korean language education. The pictures that are used in the Korean language education field help visualize the specific shape, color, and texture of the vocabulary that is the learning target; thus, helping beginner learners to recognize the meaning of the sound. Visual material stimulates the intrinsic schema of the learner and not only becomes a 'bridge' connecting the mother tongue and the Korean language, but also reduces difficulty in learning a foreign language because of the ambiguity between meaning and sound in Korean and all languages. PWIM shows commonality with existing learning methods in that it uses visual materials. However, in the past, the teacher-centered learning method has only imitated the teacher because the teacher showed a piece-wise, out-of-life photograph and taught the word. PWIM is a learner-centered learning method that stimulates learners to find vocabulary on their own by presenting visual information reflecting the context. In this paper, PWIM is more suitable for beginner learners who are learning specific concrete vocabulary such as personal identity (mainly objects), residence and environment, daily life, shopping, health, climate, and traffic. The purpose of this study was to develop a method of using PWIM suitable for Korean language learners and teaching procedures. The researchers rearranged the previous research into three steps: brainstorming and word organization, generalization of semantic and morphological rules of extracted words, and application of words. In the case of PWIM, you can go through all three steps at once. Otherwise, it is possible to divide the three steps of PWIM and teach at different times. It is expected that teachers and learners using the PWIM teaching-learning method, which uses realistic visual materials, will enable making an effective class together.

Text Steganography Based on Ci-poetry Generation Using Markov Chain Model

  • Luo, Yubo;Huang, Yongfeng;Li, Fufang;Chang, Chinchen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4568-4584
    • /
    • 2016
  • Steganography based on text generation has become a hot research topic in recent years. However, current text-generation methods which generate texts of normal style have either semantic or syntactic flaws. Note that texts of special genre, such as poem, have much simpler language model, less grammar rules, and lower demand for naturalness. Motivated by this observation, in this paper, we propose a text steganography that utilizes Markov chain model to generate Ci-poetry, a classic Chinese poem style. Since all Ci poems have fixed tone patterns, the generation process is to select proper words based on a chosen tone pattern. Markov chain model can obtain a state transfer matrix which simulates the language model of Ci-poetry by learning from a given corpus. To begin with an initial word, we can hide secret message when we use the state transfer matrix to choose a next word, and iterating until the end of the whole Ci poem. Extensive experiments are conducted and both machine and human evaluation results show that our method can generate Ci-poetry with higher naturalness than former researches and achieve competitive embedding rate.