기존의 Word2Vec이나 Glove 등의 단어 임베딩 모델은 문맥에 상관없이 단어의 Vector들이 고정된 Vector를 가지는 문제가 있다. ELMo는 훈련된 Bi-LSTM 모델을 통해서 문장마다 Word Embedding을 수행하기 때문에 문맥에 상관없이 고정된 Vector를 가지는 문제를 해결하였다. 본 논문에서는 한국어와 같이 형태적으로 복잡한 언어의 경우 수 많은 단어가 파생될 수 있어 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있기 때문에 형태소의 표상들을 결합하여 단어 표상을 사용한 ELMo를 제안한다. ELMo 단어 임베딩을 Biaffine attention 파싱 모델에 적용 결과 UAS에서 91.39%, LAS에서 90.79%으로 기존의 성능보다 향상된 성능을 얻었다.
In this paper, we propose a generative adversarial networks (GAN) based text-to-image generating method. In many natural language processing tasks, which word expressions are determined by their term frequency -inverse document frequency scores. Word2Vec is a type of neural network model that, in the case of an unlabeled corpus, produces a vector that expresses semantics for words in the corpus and an image is generated by GAN training according to the obtained vector. Thanks to the understanding of the word we can generate higher and more realistic images. Our GAN structure is based on deep convolution neural networks and pixel recurrent neural networks. Comparing the generated image with the real image, we get about 88% similarity on the Oxford-102 flowers dataset.
기계독해를 실용화하기 위해 단락을 검색하는 검색 모델은 최근 기계독해 모델이 우수한 성능을 보임에 따라 그 필요성이 더 부각되고 있다. 그러나 기존 검색 모델은 질의와 단락의 어휘 일치도나 유사도만을 계산하므로, 기계독해에 필요한 질의 어휘의 문맥에 해당하는 단락 검색을 하지 못하는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 Word2vec의 입력 단어열의 벡터에 해당하는 IN Weight Matrix와 출력 단어열의 벡터에 해당하는 OUT Weight Matrix를 사용한 단락 검색 모델을 제안한다. 제안 방법은 기존 검색 모델에 비해 정확도를 측정하는 Precision@k에서 좋은 성능을 보였다.
본 논문에서는 등장인물이 대사에서사용한감정어를 이용하여 등장인물의 감정 유형을 분류하는 방법을 제안하고 성능을 평가한다. 감정 유형은 긍정, 부정, 중립의 3 종류로 분류하며, 등장인물이 사용한 감정어를 누적하여 3 종류의 감정 유형 중에 어디에 속하는지를 파악한다. 대사로부터 감정어를 추출하기 위해 WordNet 기반의 감정어 추출 방법을 제안하고 감정어가 가진 감정 성분을 벡터로 표현하는 방식을 제안한다. WordNet은 영어 단어 간에 상위어와 하위어, 유사어 등의 관계로 연결된 네트워크 구조의 사전이다. 이 네트워크 구조에서 최상위의 감정항목과의 거리를 계산하여 단어별감정량을 계산하여 대사를 30 차원의 감정벡터로 표현한다. 등장인물별로 추출된 감정 벡터 성분들을 긍정, 부정, 중립의 3가지 차원으로 축소하여 표현한 후, 등장인물의 감정 성향이 어떻게 나타나는지를 추출한다. 또한 감정 성향의 추출 성능에 대해 헐리우드 영화 4개의 영화에서 12명의 등장인물을 선정하여 평가하여 제안한 방법의 효율성을 측정하였다. 대사는 영어로 이루어진 대사만을 사용하였다. 추출된 감정 성향 판단 성능은 75%의 정확도로 우수한 추출 성능을 나타내었다.
In this paper, we proposed an algorithm which used backtracking method to get time information, and it be modelled DMS (Dynamic Multisection) by feature vectors and time information whic are represented to similiar feature in word patterns spoken during continuous time domain, for Korean Speech recognition by independent speaker using DMS. Each state of model is represented time sequence, and have time information and feature vector. Typical feature vector is determined as the feature vector of each state to minimize the distance between word patterns. DDD Area names are selected as recognition wcabulary and 12th LPC cepstrum coefficients are used as the feature parameter. State of model is made 8 multisection and is used 0.2 as weight for time information. Through the experiment result, recognition rate by DMS model is 94.8%, and it is shown that this is better than recognition rate (89.3%) by MSVQ(Multisection Vector Quantization) method.
본 연구에서는 Word2vec을 머신러닝 분류기를 이용해 효율적인 오피니언 마이닝 방법을 제안한다. 본 연구의 목적을 위해 BOW(Bag-of-Words) 방법과 Word2vec방법을 이용해 속성 셋을 구성했다. 구성된 속성 셋은 Decision tree, Logistic regression, Support vector machine, Random forest를 이용해 오피니언 마이닝을 수행했다. 연구 결과, Word2vec 방법과 RF분류기가 가장 높은 정확도를 나타냈다. 그리고 Word2vec 방법이 BOW방법 보다 각 분류기에서 높은 성능을 나타냈다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권4호
/
pp.1400-1418
/
2020
In the development of commercial promotion, chatbot is known as one of significant skill by application of natural language processing (NLP). Conventional design methods are using bag-of-words model (BOW) alone based on Google database and other online corpus. For one thing, in the bag-of-words model, the vectors are Irrelevant to one another. Even though this method is friendly to discrete features, it is not conducive to the machine to understand continuous statements due to the loss of the connection between words in the encoded word vector. For other thing, existing methods are used to test in state-of-the-art online corpus but it is hard to apply in real applications such as telemarketing data. In this paper, we propose an improved chatbot design way using hybrid bag-of-words model and skip-gram model based on the real telemarketing data. Specifically, we first collect the real data in the telemarketing field and perform data cleaning and data classification on the constructed corpus. Second, the word representation is adopted hybrid bag-of-words model and skip-gram model. The skip-gram model maps synonyms in the vicinity of vector space. The correlation between words is expressed, so the amount of information contained in the word vector is increased, making up for the shortcomings caused by using bag-of-words model alone. Third, we use the term frequency-inverse document frequency (TF-IDF) weighting method to improve the weight of key words, then output the final word expression. At last, the answer is produced using hybrid retrieval model and generate model. The retrieval model can accurately answer questions in the field. The generate model can supplement the question of answering the open domain, in which the answer to the final reply is completed by long-short term memory (LSTM) training and prediction. Experimental results show which the hybrid word vector expression model can improve the accuracy of the response and the whole system can communicate with humans.
word2vec 등 기존의 단어 임베딩 기법은 원시 말뭉치에 출현한 단어들만을 대상으로 각 단어를 다차원 실수 벡터 공간에 고정된 길이의 벡터로 표현하기 때문에 형태론적으로 풍부한 표현체계를 가진 언어에 대한 단어 임베딩 기법에서는 말뭉치에 출현하지 않은 단어들에 대한 단어 벡터를 표현할 때 OOV(out-of-vocabulary) 문제가 빈번하게 발생한다. 문장을 구성하는 단어 벡터들로부터 문장 벡터를 구성하는 문장 임베딩의 경우에도 OOV 단어가 포함되었을 때 문장 벡터를 정교하게 구성하지 못하는 문제점이 있다. 특히, 교착어인 한국어는 어휘형태소와 문법형태소가 결합되는 형태론적 특성 때문에 미등록어의 임베딩 기법은 성능 향상의 중요한 요인이다. 본 연구에서는 단어의 형태학적인 정보를 이용하는 방식을 문장 수준으로 확장하고 OOV 단어 문제에 강건한 병렬 Tri-LSTM 문장 임베딩을 제안한다. 한국어 감정 분석 말뭉치에 대해 성능 평가를 수행한 결과 한국어 문장 임베딩을 위한 임베딩 단위는 형태소 단위보다 문자 단위가 우수한 성능을 보였으며, 병렬 양방향 Tri-LSTM 문장 인코더는 86.17%의 감정 분석 정확도를 달성하였다.
본 연구에서는 벡터 공간 모델과 HAL (Hyperspace Analog to Language)을 적용해서 단어 의미 유사성을 군집한다. 일정한 크기의 문맥을 통해서 단어 간의 상관성을 측정하는 HAL을 도입하고(Lund and Burgess 1996), 상관성 측정에서 고빈도와 저빈도에 다르게 측정되는 왜곡을 줄이기 위해서 벡터 공간 모델을 적용해서 단어 쌍의 코사인 유사도를 측정하였다(Salton et al. 1975, Widdows 2004). HAL과 벡터 공간 모델로 만들어지는 공간은 다차원이므로, 차원을 축소하기 위해서 PCA (Principal Component Analysis)와 SVD (Singular Value Decomposition)를 적용하였다. 유사성 군집을 위해서 비감독 방식과 감독 방식을 적용하였는데, 비감독 방식에는 클러스터링을 감독 방식에는 SVM (Support Vector Machine), 나이브 베이즈 구분자(Naive Bayes Classifier), 최대 엔트로피(Maximum Entropy) 방식을 적용하였다. 이 연구는 언어학적 측면에서 Harris (1954), Firth (1957)의 분포 가설(Distributional Hypothesis)을 활용한 의미 유사도를 측정하였으며, 심리언어학적 측면에서 의미 기억을 설명하기 위한 모델로 벡터 공간 모델과 HAL을 결합하였으며, 전산적 언어 처리 관점에서 기계학습 방식 중 감독 기반과 비감독 기반을 적용하였다.
이 연구는 단어 중의성 해소를 위해 SVM 분류기가 최적의 성능을 가져오는 문맥창의 크기와 다양한 가중치 방법을 파악하고자 하였다. 실험집단으로 한글 신문기사를 적용하였다. 문맥창의 크기로 지역 문맥은 좌우 3단어, 한 문장, 그리고 좌우 50바이트 크기를 사용하였으며, 전역문맥으로 신문기사 전체를 대상으로 하였다. 가중치 부여 기법으로는 단순빈도인 이진 단어빈도와 단순 단어빈도를, 정규화 빈도로 단순 또는 로그를 취한 단어빈도 ${\times}$ 역문헌빈도를 사용하였다. 실험 결과 문맥창의 크기는 좌우 50 바이트가 가장 좋은 성능을 보였으며, 가중치 부여 방법은 이진 단어빈도가 가장 좋은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.