광학 문자 인식(OCR)을 통해 문서의 글자를 인식할 때 띄어쓰기 오류가 발생한다. 본 논문에서는 이를 해결하기 위해 OCR의 후처리 과정으로 동적 프로그래밍을 이용한 분절(Segmentation) 방식의 띄어쓰기 오류 교정 시스템을 제안한다. 제안하는 시스템의 띄어쓰기 오류 교정 과정은 다음과 같다. 첫째, 띄어쓰기 오류가 있다고 분류된 어절 내의 공백을 모두 제거한다. 둘째, 공백이 제거된 문자열을 동적 프로그래밍을 이용한 분절로 입력 문자열에 대하여 가능한 모든 띄어쓰기 후보들을 찾는다. 셋째, 뉴스 기사 말뭉치와 그 말뭉치에 기반을 둔 띄어쓰기 확률 모델을 참조하여 각 후보의 띄어쓰기 확률을 계산한다. 마지막으로 띄어쓰기 후보들 중 확률이 가장 높은 후보를 교정 결과로 제시한다. 본 논문에서 제안하는 시스템을 이용하여 OCR의 띄어쓰기 오류를 해결할 수 있었다. 향후 띄어쓰기 오류 교정에 필요한 언어 규칙 등을 시스템에 추가한 띄어쓰기 교정시스템을 통하여 OCR의 최종적인 인식률을 향상에 대해 연구할 예정이다.
본 논문에서는 모바일 폰에서 오프라인 필기체 과분할 인식의 후처리 방법에 관하여 논하였다. 제안된 방법은 조합 행렬 생성, 문자 조합 필터링, 문자 유사도 측정으로 구성된다. 조합 행렬 생성 과정은 각각의 조각의 인식 결과로부터 생성가능한 모든 조합 행렬을 계산하는 부분이며 조합 행렬을 그래프로 구성하게 된다. 문자 조합 필터링 과정은 그래프의 노드들과 단어 사전을 비교하여 불필요한 노드를 삭제하는 과정이며 문자 유사도 측정과정은 단어 사전의 각각의 단어들과 Levenshtein 거리(distance)를 계산하여 최적의 후처리 결과를 추출하게 된다. 제안된 방법의 인식률은 85.8%의 정확도를 보였다.
This study aims to identify whether shopping malls affect customer satisfaction significantly according to the store image assessment of consumers after their purchases. This comparative study on the store image and satisfaction level according to shopping mall type is supposed to offer useful basic data for developing a niche market while establishing market segmentation strategies for internet fashion shopping malls. As a result of an empirical analysis, it was found that important standards for assessing the store image of internet fashion shopping malls include product and information service, customer service after purchase, atmosphere, convenience and reliability, and all five factors were shown to affect the satisfaction level for all general malls significantly. However, product and information service and convenience were shown not to be significantly influential to the satisfaction level for fashion specialty mall. In addition, customer satisfaction was found to affect the customers' intention to repurchase and word of mouth. Therefore, if marketing managers of internet fashion shopping malls elevate customer satisfaction by managing the store image before the customers' purchase, they can attract customers to repurchase intention and ultimately prompt a word of mouth effect.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권9호
/
pp.4264-4279
/
2017
In this paper, maximum likelihood-based automatic lexicon generation using mixed-syllables is proposed for unlimited vocabulary voice interface for East Asian languages (e.g. Korean, Chinese and Japanese) in AI-assistant based interaction with mobile devices. The conventional lexicon has two inevitable problems: 1) a tedious repetition of out-of-lexicon unit additions to the lexicon, and 2) the propagation of errors during a morpheme analysis and space segmentation. The proposed method provides an automatic framework to solve the above problems. The proposed method produces a level of overall accuracy similar to one of previous methods in the presence of one out-of-lexicon word in a sentence, but the proposed method provides superior results with the absolute improvements of 1.62%, 5.58%, and 10.09% in terms of word accuracy when the number of out-of-lexicon words in a sentence was two, three and four, respectively.
Purpose: The purpose of this study is to derive various ways to realize customer satisfaction for the development of the service industry by exploring research trends related to customer satisfaction, which is presented as an important goal in the service industry. Research design, data and methodology: To this end, 1,456 papers with English abstracts using scienceON were used for analysis. Using Python 3.7, word frequency and co-occurrence analysis were confirmed, and topics related to research trends were classified through BERTopic and LDA. Results: As a result of word frequency and co-occurrence frequency analysis, words such as quality, intention, and loyalty appeared frequently. As a result of BERTopic and LDA, 11 topics such as 'catering service' and 'brand justice' were derived. As a result of trend analysis, it was confirmed that 'brand justice' and 'internet shopping' are emerging as relatively important research topics, but CRM is less interested. Conclusions: The results of this study showed that the 7P marketing strategy is working to some extent. Therefore, it is proposed to conduct research related to acquisition of good customers through service price, customer lifetime value application, and customer segmentation that are expected to be needed for the development of the service industry.
Liu, Jingxin;Cheng, Jieren;Peng, Xin;Zhao, Zeli;Tang, Xiangyan;Sheng, Victor S.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권6호
/
pp.1833-1848
/
2022
Named entity recognition (NER) is an important basic task in the field of Natural Language Processing (NLP). Recently deep learning approaches by extracting word segmentation or character features have been proved to be effective for Chinese Named Entity Recognition (CNER). However, since this method of extracting features only focuses on extracting some of the features, it lacks textual information mining from multiple perspectives and dimensions, resulting in the model not being able to fully capture semantic features. To tackle this problem, we propose a novel Multi-view Semantic Feature Fusion Model (MSFM). The proposed model mainly consists of two core components, that is, Multi-view Semantic Feature Fusion Embedding Module (MFEM) and Multi-head Self-Attention Mechanism Module (MSAM). Specifically, the MFEM extracts character features, word boundary features, radical features, and pinyin features of Chinese characters. The acquired font shape, font sound, and font meaning features are fused to enhance the semantic information of Chinese characters with different granularities. Moreover, the MSAM is used to capture the dependencies between characters in a multi-dimensional subspace to better understand the semantic features of the context. Extensive experimental results on four benchmark datasets show that our method improves the overall performance of the CNER model.
본 논문은 골프 동영상에 포함된 오디오 정보로부터 검출된 이벤트 사운드 구간과 골프 선수이름이 포함된 음성구간을 결합하여 선수별 이벤트 구간을 검색하는 방식을 제안한다. 전체적인 시스템은 동영상으로부터 분할된 오디오 스트림으로부터 잡음제거, 오디오 구간분할, 음성 인식 등의 과정을 통한 자동색인 모듈과 사용자가 텍스트로 입력한 선수 이름을 발음열로 변환하고, 색인된 데이터베이스에서 질의된 선수 이름과 상응하는 음성구간과 연결되는 이벤트 구간을 찾아주는 검색 모듈로 구성된다. 선수이름 검색을 위해서 본 논문에서는 음소 기반, 단어 기반, 단어와 음소를 결합한 하이브리드 방식을 적용한 선수별 이벤트 구간 검색결과를 비교하였다.
본 연구는 한국어 분절음 인식을 위한 인식 단위 설정과 학습시 학습 데이터 분할 방법에 대한 연구이다 대용량 음성 인식을 수행할 경우, 표준 패턴의 인식 단위를 단어나 음절이 아닌 분절음 단위로 사용하여야 효율적인 음성 인식을 수행할 수 있다. 본 연구는 이와 같은 분절음 인식을 수행하기 위한 연구로서, 인식 단위 설정 변화와 학습시 학습 데이터 분할 방법에 따른 인식 결과를 미국 OGI 연구소의 speech toolkit을 이용하여 검토한다. 인식 단위에 관해서 특히 모음의 경우 철자에 기초한 음소별 인식 단위 설정과 현대어 발음에 기초한 인식 단위 설정을 비교했으며, 그 결과 발음에 기초해 몇 개의 모음을 통합한 경우가 더 우수한 결과를 보였으며, 학습 데이터 분할 방법에 따른 인식 결과는 손으로 분할한 방법이 자동 분할 방법보다 약 2-3%의 인식 향상을 보였다. 또한 인식 단위의 설정에 있어서 독립된 분절음으로 설정한 경우보다 앞, 뒤의 소리의 상황을 고려한 바이폰(bipbone)을 이용할 경우가 5.7%-25.9%의 향상된 인식 결과를 보였다 인식 방법에 있어서는 HMM 만을 이용한 방법보다 신경회로망과 HMM을 결합한 인식 방법이 6.1%-7.5%의 더 좋은 인식률을 나타내었다.
본 연구는 지방의료원의 고객세분화를 통하여 향후 전문화된 의료기관으로 진료전문성을 강화하여 경쟁력을 확보할 수 있는 진료전문화 전략을 제시하는데 목적이 있다. 조사기간은 2013년 1월부터 12월까지 입원한 환자 26,658명을 연구대상을 선정하였다. 분석방법은 군집분석과 의사결정나무분석을 이용하였다. 결론을 보면, 성별은 여자, 연령은 60세 이상, 질환별로는 근 골격계 및 결합조직의 질환이 충성고객으로 선정되었다. 이들은 지방의료원의 고객관리측면에서 향후 구전의 효과가 높은 고객 군으로 금전적인 소비규모가 높은 점을 고려하여 이들에게 제공된 의료서비스에 대한 모니터링과 커뮤니케이션을 통해 지속적인 관계를 유지하는 것이 중요하다. 앞으로 전문 분야의 전문의와 전문적 시설 확보 등의 적합한 조직구조와 환경을 갖추는 것이 중요하며, 지역 내 개원의, 유관기관간의 전략적 제휴 통한 진료협력 및 의뢰, 의료서비스 범위의 집중화가 필요하다.
본 논문에서는 한국어 음성 데이터베이스 구축을 위하여 자동으로 음소경계를 추출하는 자동 음성분할 및 레이블링 시스템을 구현하였다. 기존의 음성분할 및 레이블링 기술을 근간으로 본 시스템을 구현하였으며, 또한 사용자가 자동분할된 음소경계를 확인하여 그 경계를 쉽게 수정할 수 있도록 한글 모티프 환경에서 그래픽 사용자 인터페이스를 개발하였다. 개발된 시스템은 16kHz로 샘플링된 음성을 대상으로 하고 있으며, 레이블링 단위는 45개의 유사음소와 하나의 묵음으로 구성하였다. 그리고 언어학적 정보의 입력방식으로는 음소표기와 철자표기를 사용하였으며, 패턴매칭 방법으로는 hidden Markov model(HMM)을 이용하였다. 개발된 시스템의 각 음소 모델은 수작업에 의해서 음소단위로 분할한 음성학적으로 균형잡힌 445 단어 데이터베이스를 이용해서 훈련되었다. 그리고 본 시스템의 성능평가를 위해 훈련에 사용되지 않는 문장 데이터베이스에 대해서 자동 음성분할 실험을 수행하였다. 실험결과, 수작업에 의해서 분할된 음소경계위치와의 오차가 20ms 이내인 것이 74.7%였으며, 40ms이내에는 92.8%가 포함되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.