• 제목/요약/키워드: Word Recognition

검색결과 799건 처리시간 0.025초

Use of Word Clustering to Improve Emotion Recognition from Short Text

  • Yuan, Shuai;Huang, Huan;Wu, Linjing
    • Journal of Computing Science and Engineering
    • /
    • 제10권4호
    • /
    • pp.103-110
    • /
    • 2016
  • Emotion recognition is an important component of affective computing, and is significant in the implementation of natural and friendly human-computer interaction. An effective approach to recognizing emotion from text is based on a machine learning technique, which deals with emotion recognition as a classification problem. However, in emotion recognition, the texts involved are usually very short, leaving a very large, sparse feature space, which decreases the performance of emotion classification. This paper proposes to resolve the problem of feature sparseness, and largely improve the emotion recognition performance from short texts by doing the following: representing short texts with word cluster features, offering a novel word clustering algorithm, and using a new feature weighting scheme. Emotion classification experiments were performed with different features and weighting schemes on a publicly available dataset. The experimental results suggest that the word cluster features and the proposed weighting scheme can partly resolve problems with feature sparseness and emotion recognition performance.

대용량 한국어 연속음성인식 시스템 개발 (On the Development of a Large-Vocabulary Continuous Speech Recognition System for the Korean Language)

  • 최인정;권오욱;박종렬;박용규;김도영;정호영;은종관
    • 한국음향학회지
    • /
    • 제14권5호
    • /
    • pp.44-50
    • /
    • 1995
  • 본 논문에서는 연속분포 HMM을 이용한 대용량 한국어 연속음성인식 시스템에 관하여 기술한다. 인식 시스템의 성능을 개선하기 위하여 음성 모델링 단위의 선정, 단어간 모델링, 탐색 알고리듬, 문법에 관하여 연구하였다. 기본 인식단위로 트라이존을 사용하며 학습성을 개선하고 기능어에서의 에러 발생을 줄이기 위하여 일반화된 트라이폰과 function word-de-pendent phone을 사용한다. 단어 사이에는 묵음 모델과 null transition을 사용하여 선택적으로 묵음을 추가하였다. 언어모델로는 단어 클래스에 근거한 word pair 문법과 bigram 모델이 이용된다. 또한 지식 정보들을 효율적으로 활용할 수 있도록 N개의 후보 문장들을 탐색할 수 있는 알고리듬을 구현하였다. 후처리기에서는 word triple문법을 사용하여 N개의 최적 문장을 재정렬하여 최종적인 인식 문장을 결정하며, 마지막으로 후치사와 관련된 사소한 에러들을 수정한다. 3천단어의 연속음성 데이타베이스에 대한 인식실험에서, 후처리로 word triple 문법을 사용하여 $93.1\%$의 단어 인식률과 $73.8\%$의 문장 인식률을 얻었다.

  • PDF

한국어 음성인식 플랫폼(ECHOS)의 개선 및 평가 (Improvement and Evaluation of the Korean Large Vocabulary Continuous Speech Recognition Platform (ECHOS))

  • 권석봉;윤성락;장규철;김용래;김봉완;김회린;유창동;이용주;권오욱
    • 대한음성학회지:말소리
    • /
    • 제59호
    • /
    • pp.53-68
    • /
    • 2006
  • We report the evaluation results of the Korean speech recognition platform called ECHOS. The platform has an object-oriented and reusable architecture so that researchers can easily evaluate their own algorithms. The platform has all intrinsic modules to build a large vocabulary speech recognizer: Noise reduction, end-point detection, feature extraction, hidden Markov model (HMM)-based acoustic modeling, cross-word modeling, n-gram language modeling, n-best search, word graph generation, and Korean-specific language processing. The platform supports both lexical search trees and finite-state networks. It performs word-dependent n-best search with bigram in the forward search stage, and rescores the lattice with trigram in the backward stage. In an 8000-word continuous speech recognition task, the platform with a lexical tree increases 40% of word errors but decreases 50% of recognition time compared to the HTK platform with flat lexicon. ECHOS reduces 40% of recognition errors through incorporation of cross-word modeling. With the number of Gaussian mixtures increasing to 16, it yields word accuracy comparable to the previous lexical tree-based platform, Julius.

  • PDF

분할기반 은닉 마르코프 모델과 다층 퍼셉트론 결합 영문수표필기단어 인식시스템 (A Segmentation-Based HMM and MLP Hybrid Classifier for English Legal Word Recognition)

  • 김계경;김진호;박희주
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.200-207
    • /
    • 2001
  • 본 논문에서는 분할기반 은닉 마르코프 모델(segmentation based hidden Markov model)과 다층 퍼셉트론 (multi-layer perceptron)을 결합한 영문수표 필기단어 (legal word) 인식시스템을 제안하였다. 가변길이의 필기체 영문 단어 분할결과를 인식할 수 있도록 은닉 마르코프 모델을 이용하여 명확한 분할기반 (explicit segmentation-based) 단어단위 (word level) 인식기를 구현하고 다층 퍼셉트론을 이용하여 내재적 분할기반 (implicit segmentation-based) 단어단위 인식기를 구현하였다. 그리고 이종(heterogeneous)의 두 인식기를 새로운 결합 확률추정방식에 따라 결합함으로서 상호 보완 능력을 극대화시킬 수 있는 영문수표 필기단어 인식시스템을 구현하였다. 제안한 시스템을 캐나다 콘코디아 대학의 CENPARMI 영문 수표 데이터베이스에 적용하여 실험해 본 결과 기존의 연구결과에 비해 비교적 우수한 인식성능을 얻을 수 있었다.

  • PDF

음성인식에서 문맥의존 음향모델의 성능향상을 위한 유사음소단위에 관한 연구 (A Study on Phoneme Likely Units to Improve the Performance of Context-dependent Acoustic Models in Speech Recognition)

  • 임영춘;오세진;김광동;노덕규;송민규;정현열
    • 한국음향학회지
    • /
    • 제22권5호
    • /
    • pp.388-402
    • /
    • 2003
  • In this paper, we carried out the word, 4 continuous digits. continuous, and task-independent word recognition experiments to verify the effectiveness of the re-defined phoneme-likely units (PLUs) for the phonetic decision tree based HM-Net (Hidden Markov Network) context-dependent (CD) acoustic modeling in Korean appropriately. In case of the 48 PLUs, the phonemes /ㅂ/, /ㄷ/, /ㄱ/ are separated by initial sound, medial vowel, final consonant, and the consonants /ㄹ/, /ㅈ/, /ㅎ/ are also separated by initial sound, final consonant according to the position of syllable, word, and sentence, respectively. In this paper. therefore, we re-define the 39 PLUs by unifying the one phoneme in the separated initial sound, medial vowel, and final consonant of the 48 PLUs to construct the CD acoustic models effectively. Through the experimental results using the re-defined 39 PLUs, in word recognition experiments with the context-independent (CI) acoustic models, the 48 PLUs has an average of 7.06%, higher recognition accuracy than the 39 PLUs used. But in the speaker-independent word recognition experiments with the CD acoustic models, the 39 PLUs has an average of 0.61% better recognition accuracy than the 48 PLUs used. In the 4 continuous digits recognition experiments with the liaison phenomena. the 39 PLUs has also an average of 6.55% higher recognition accuracy. And then, in continuous speech recognition experiments, the 39 PLUs has an average of 15.08% better recognition accuracy than the 48 PLUs used too. Finally, though the 48, 39 PLUs have the lower recognition accuracy, the 39 PLUs has an average of 1.17% higher recognition characteristic than the 48 PLUs used in the task-independent word recognition experiments according to the unknown contextual factor. Through the above experiments, we verified the effectiveness of the re-defined 39 PLUs compared to the 48PLUs to construct the CD acoustic models in this paper.

고립 단어 인식 결과의 비유사 후보 단어 제외 성능을 개선하기 위한 다양한 접근 방법 연구 (Various Approaches to Improve Exclusion Performance of Non-similar Candidates from N-best Recognition Results on Isolated Word Recognition)

  • 윤영선
    • 말소리와 음성과학
    • /
    • 제2권4호
    • /
    • pp.153-161
    • /
    • 2010
  • Many isolated word recognition systems may generate non-similar words for recognition candidates because they use only acoustic information. The previous study [1,2] investigated several techniques which can exclude non-similar words from N-best candidate words by applying Levenstein distance measure. This paper discusses the various improving techniques of removing non-similar recognition results. The mentioned methods include comparison penalties or weights, phone accuracy based on confusion information, weights candidates by ranking order and partial comparisons. Through experimental results, it is found that some proposed method keeps more accurate recognition results than the previous method's results.

  • PDF

The Effects of Syllable Boundary Ambiguity on Spoken Word Recognition in Korean Continuous Speech

  • Kang, Jinwon;Kim, Sunmi;Nam, Kichun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권11호
    • /
    • pp.2800-2812
    • /
    • 2012
  • The purpose of this study was to examine the syllable-word boundary misalignment cost on word segmentation in Korean continuous speech. Previous studies have demonstrated the important role of syllabification in speech segmentation. The current study investigated whether the resyllabification process affects word recognition in Korean continuous speech. In Experiment I, under the misalignment condition, participants were presented with stimuli in which a word-final consonant became the onset of the next syllable. (e.g., /k/ in belsak ingan becomes the onset of the first syllable of ingan 'human'). In the alignment condition, they heard stimuli in which a word-final vowel was also the final segment of the syllable (e.g., /eo/ in heulmeo ingan is the end of both the syllable and word). The results showed that word recognition was faster and more accurate in the alignment condition. Experiment II aimed to confirm that the results of Experiment I were attributable to the resyllabification process, by comparing only the target words from each condition. The results of Experiment II supported the findings of Experiment I. Therefore, based on the current study, we confirmed that Korean, a syllable-timed language, has a misalignment cost of resyllabification.

음소기반 인식 네트워크에서의 비인식 대상 문장 거부 기능의 비교 연구 (Comparison Research of Non-Target Sentence Rejection on Phoneme-Based Recognition Networks)

  • 김형태;하진영
    • 대한음성학회지:말소리
    • /
    • 제59호
    • /
    • pp.27-51
    • /
    • 2006
  • For speech recognition systems, rejection function as well as decoding function is necessary to improve the reliability. There have been many research efforts on out-of-vocabulary word rejection, however, little attention has been paid on non-target sentence rejection. Recently pronunciation approaches using speech recognition increase the need for non-target sentence rejection to provide more accurate and robust results. In this paper, we proposed filler model method and word/phoneme detection ratio method to implement non-target sentence rejection system. We made performance evaluation of filler model along to word-level, phoneme-level, and sentence-level filler models respectively. We also perform the similar experiment using word-level and phoneme-level word/phoneme detection ratio method. For the performance evaluation, the minimized average of FAR and FRR is used for comparing the effectiveness of each method along with the number of words of given sentences. From the experimental results, we got to know that word-level method outperforms the other methods, and word-level filler mode shows slightly better results than that of word detection ratio method.

  • PDF

A Study on Promoting Early Reading Ability through an Explicit High-frequency Sight Word Instruction

  • Huh, Keun
    • 영어어문교육
    • /
    • 제17권1호
    • /
    • pp.17-35
    • /
    • 2011
  • The purpose of this study was to explore the effect of an explicit word instruction for EFL beginning readers and their perception on the learning experience. Data were attained from 16 fourth graders who took English class as a development activity. Data include the results of pre- and post-test of high frequency sight word recognition, oral reading ability, students' survey responses, and teacher observation. The descriptive statistics were obtained for the result of the pre- and post-test. The findings from the student survey and teacher observation were also provided and interpreted to better understand the result of project and students' perception on the learning experience. The followings are the results of this study. The word recognition ability of the students was dramatically improved after the project. The students were satisfied with the overall learning experience perceiving it as helpful and fun learning. They expressed that the explicit word instruction helped their word recognition and reading ability. The results also supported that the confidence of students on their reading ability were heightened. Several suggestions are made for teachers and researchers on the word instruction for young EFL learners who are beginning readers.

  • PDF

Word Embedding 자질을 이용한 한국어 개체명 인식 및 분류 (Korean Named Entity Recognition and Classification using Word Embedding Features)

  • 최윤수;차정원
    • 정보과학회 논문지
    • /
    • 제43권6호
    • /
    • pp.678-685
    • /
    • 2016
  • 한국어 개체명 인식에 다양한 연구가 있었지만, 영어 개체명 인식에 비해 자질이 부족한 문제를 가지고 있다. 본 논문에서는 한국어 개체명 인식의 자질 부족 문제를 해결하기 위해 word embedding 자질을 개체명 인식에 사용하는 방법을 제안한다. CBOW(Continuous Bag-of-Words) 모델을 이용하여 word vector를 생성하고, word vector로부터 K-means 알고리즘을 이용하여 군집 정보를 생성한다. word vector와 군집 정보를 word embedding 자질로써 CRFs(Conditional Random Fields)에 사용한다. 실험 결과 TV 도메인과 Sports 도메인, IT 도메인에서 기본 시스템보다 각각 1.17%, 0.61%, 1.19% 성능이 향상되었다. 또한 제안 방법이 다른 개체명 인식 및 분류 시스템보다 성능이 향상되는 것을 보여 그 효용성을 입증했다.