• Title/Summary/Keyword: Word Network

Search Result 725, Processing Time 0.022 seconds

Investigating Opinion Mining Performance by Combining Feature Selection Methods with Word Embedding and BOW (Bag-of-Words) (속성선택방법과 워드임베딩 및 BOW (Bag-of-Words)를 결합한 오피니언 마이닝 성과에 관한 연구)

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.163-170
    • /
    • 2019
  • Over the past decade, the development of the Web explosively increased the data. Feature selection step is an important step in extracting valuable data from a large amount of data. This study proposes a novel opinion mining model based on combining feature selection (FS) methods with Word embedding to vector (Word2vec) and BOW (Bag-of-words). FS methods adopted for this study are CFS (Correlation based FS) and IG (Information Gain). To select an optimal FS method, a number of classifiers ranging from LR (logistic regression), NN (neural network), NBN (naive Bayesian network) to RF (random forest), RS (random subspace), ST (stacking). Empirical results with electronics and kitchen datasets showed that LR and ST classifiers combined with IG applied to BOW features yield best performance in opinion mining. Results with laptop and restaurant datasets revealed that the RF classifier using IG applied to Word2vec features represents best performance in opinion mining.

Word Sense Distinction of Middle Verbs for Korean Verb Wordnet (한국어 동사의 어휘의미망 구축을 위한 중립동사의 의미분할)

  • Lee, Eunr-Young;Yoon, Ae-Sun
    • Language and Information
    • /
    • v.9 no.2
    • /
    • pp.23-48
    • /
    • 2005
  • This study aims to discuss the word sense distinction of Korean middle verbs for restructuring KorLexVerb 1.0. Despite the duality of its meaning and syntactic structure, the word senses of middle verb are not clearly distinguished in current dictionaries. The underspecification causes very often mismatches that a same Korean word sense is used for two different English verb senses. A close examination on the syntactic and semantic properties of middle verb shows us that the word sense distinction and the reconstruction of hierarchical structure are indispensable. Finally, by doing this fine grained word sense distinction, we propose an alternative way of classification and description of the verb polysemy for KorLexVerb 1.0 as well as for dictionary-like language resources.

  • PDF

The Method of the Evaluation of Verbal Lexical-Semantic Network Using the Automatic Word Clustering System (단어클러스터링 시스템을 이용한 어휘의미망의 활용평가 방안)

  • Kim, Hae-Gyung;Song, Mi-Young
    • Korean Journal of Oriental Medicine
    • /
    • v.12 no.3 s.18
    • /
    • pp.1-15
    • /
    • 2006
  • For the recent several years, there has been much interest in lexical semantic network. However, it seems to be very difficult to evaluate the effectiveness and correctness of it and invent the methods for applying it into various problem domains. In order to offer the fundamental ideas about how to evaluate and utilize lexical semantic networks, we developed two automatic word clustering systems, which are called system A and system B respectively. 68,455,856 words were used to learn both systems. We compared the clustering results of system A to those of system B which is extended by the lexical-semantic network. The system B is extended by reconstructing the feature vectors which are used the elements of the lexical-semantic network of 3,656 '-ha' verbs. The target data is the 'multilingual Word Net-CoreNet'.When we compared the accuracy of the system A and system B, we found that system B showed the accuracy of 46.6% which is better than that of system A, 45.3%.

  • PDF

A Word Sense Disambiguation Method with a Semantic Network (의미네트워크를 이용한 단어의미의 모호성 해결방법)

  • DingyulRa
    • Korean Journal of Cognitive Science
    • /
    • v.3 no.2
    • /
    • pp.225-248
    • /
    • 1992
  • In this paper, word sense disambiguation methods utilizing a knowledge base based on a semantic network are introduced. The basic idea is to keep track of a set of paths in the knowledge base which correspond to the inctemental semantic interpretation of a input sentence. These paths are called the semantic paths. when the parser reads a word, the senses of this word which are not involved in any of the semantic paths are removed. Then the removal operation is propagated through the knowledge base to invoke the removal of the senses of other words that have been read before. This removal operation is called recusively as long as senses can be removed. This is called the recursive word sense removal. Concretion of a vague word's concept is one of the important word sense disambiguation methods. We introduce a method called the path adjustment that extends the conctetion operation. How to use semantic association or syntactic processing in coorporation with the above methods is also considered.

Research trends related to childhood and adolescent cancer survivors in South Korea using word co-occurrence network analysis

  • Kang, Kyung-Ah;Han, Suk Jung;Chun, Jiyoung;Kim, Hyun-Yong
    • Child Health Nursing Research
    • /
    • v.27 no.3
    • /
    • pp.201-210
    • /
    • 2021
  • Purpose: This study analyzed research trends related to childhood and adolescent cancer survivors (CACS) using word co-occurrence network analysis on studies registered in the Korean Citation Index (KCI). Methods: This word co-occurrence network analysis study explored major research trends by constructing a network based on relationships between keywords (semantic morphemes) in the abstracts of published articles. Research articles published in the KCI over the past 10 years were collected using the Biblio Data Collector tool included in the NetMiner Program (version 4), using "cancer survivors", "adolescent", and "child" as the main search terms. After pre-processing, analyses were conducted on centrality (degree and eigenvector), cohesion (community), and topic modeling. Results: For centrality, the top 10 keywords included "treatment", "factor", "intervention", "group", "radiotherapy", "health", "risk", "measurement", "outcome", and "quality of life". In terms of cohesion and topic analysis, three categories were identified as the major research trends: "treatment and complications", "adaptation and support needs", and "management and quality of life". Conclusion: The keywords from the three main categories reflected interdisciplinary identification. Many studies on adaptation and support needs were identified in our analysis of nursing literature. Further research on managing and evaluating the quality of life among CACS must also be conducted.

Using Text Network Analysis for Analyzing Academic Papers in Nursing (간호학 학술논문의 주제 분석을 위한 텍스트네크워크분석방법 활용)

  • Park, Chan Sook
    • Perspectives in Nursing Science
    • /
    • v.16 no.1
    • /
    • pp.12-24
    • /
    • 2019
  • Purpose: This study examined the suitability of using text network analysis (TNA) methodology for topic analysis of academic papers related to nursing. Methods: TNA background theories, software programs, and research processes have been described in this paper. Additionally, the research methodology that applied TNA to the topic analysis of the academic nursing papers was analyzed. Results: As background theories for the study, we explained information theory, word co-occurrence analysis, graph theory, network theory, and social network analysis. The TNA procedure was described as follows: 1) collection of academic articles, 2) text extraction, 3) preprocessing, 4) generation of word co-occurrence matrices, 5) social network analysis, and 6) interpretation and discussion. Conclusion: TNA using author-keywords has several advantages. It can utilize recognized terms such as MeSH headings or terms chosen by professionals, and it saves time and effort. Additionally, the study emphasizes the necessity of developing a sophisticated research design that explores nursing research trends in a multidimensional method by applying TNA methodology.

A Study on Categorization of Korean News Article based on CNN using Doc2Vec (Doc2Vec을 활용한 CNN기반 한국어 신문기사 분류에 관한 연구)

  • Kim, Do-Woo;Koo, Myoung-Wan
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.67-71
    • /
    • 2016
  • 본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.

  • PDF

A Study on Categorization of Korean News Article based on CNN using Doc2Vec (Doc2Vec을 활용한 CNN기반 한국어 신문기사 분류에 관한 연구)

  • Kim, Do-Woo;Koo, Myoung-Wan
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.67-71
    • /
    • 2016
  • 본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.

  • PDF

Word Sense Disambiguation of Predicate using Semi-supervised Learning and Sejong Electronic Dictionary (세종 전자사전과 준지도식 학습 방법을 이용한 용언의 어의 중의성 해소)

  • Kang, Sangwook;Kim, Minho;Kwon, Hyuk-chul;Oh, Jyhyun
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.2
    • /
    • pp.107-112
    • /
    • 2016
  • The Sejong Electronic(machine-readable) Dictionary, developed by the 21st century Sejong Plan, contains systematically organized information on Korean words. It helps to solve problems encountered in the electronic formatting of the still-commonly-used hard-copy dictionary. The Sejong Electronic Dictionary, however has a limitation relate to sentence structure and selection-restricted nouns. This paper discuses the limitations of word-sense disambiguation(WSD) that uses subcategorization information suggested by the Sejong Electronic Dictionary and generalized selection-restricted nouns from the Korean Lexico-semantic network. An alternative method that utilized semi-supervised learning, the chi-square test and some other means to make WSD decisions is presented herein.

Centrality Measures for Bibliometric Network Analysis (계량서지적 네트워크 분석을 위한 중심성 척도에 관한 연구)

  • Lee Jae-Yun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.3
    • /
    • pp.191-214
    • /
    • 2006
  • Recently, some bibliometric researchers tried to use the centrality analysis methods and the centrality measures which are standard tools in social network analysis. However the traditional centrality measures originated from social network analysis could not deal with weighted networks such as co-citation networks. In this study. new centrality measures for analyzing bibliometric networks with link weights are suggested and applied to three real network data, including an author co-citation network, a co-word network, and a website co-link network. The results of centrality analyses in these three cases can be regarded as Promising the usefulness of suggested centrality measures, especially in analyzing the Position and influence of each node in a bibliometric network.