• Title/Summary/Keyword: Wood-biomass

Search Result 408, Processing Time 0.03 seconds

Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis (급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구)

  • Choi, Sang Kyu;Choi, Yeon Seok;Kim, Seock Joon;Han, So Young
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.646-652
    • /
    • 2016
  • Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

The Nuclear DNA Content and Histological Characteristics of Triploid Poplars Grown In Vitro (현사시나무 3배체의 핵 DNA 함량 및 조직학적 특성)

  • Bae, Eun-Kyung;Lee, Hyoshin;Lee, Jae-Soon;Choi, Young-Im;Park, So-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.198-203
    • /
    • 2013
  • Herein we analyzed the nuclear DNA content and the histological characteristics of the triploid of the 'Hyunsasi' (Populus alba ${\times}$ P. glandulosa $F_1$) which were developed for biomass production and molecular breeding research. The flow cytometric analysis showed that the nuclear DNA content of the 3 triploids were 1.6 times greater than those of the diploid. In terms of histological characteristics, the cross-section area of the stem of 'Line-18' was 1.6 times larger than that of the diploid. The area of pith, and cortex and phloem of the stem of 'Line-18' was also 1.6 and 2.0 times larger than that of the diploid, respectively. Moreover, the length and area of guard cell of 'Line-18' was 1.2 times larger than that of the diploid. These results helps to understand the cytological characteristics of the triploid poplar clones, and further investigations in the growth rate and wood properties of the triploids growing in the field will determine whether the triploid poplars are good candidates for molecular breeding programs and for the improvement of industrial biomass productivity.

Korean Tricholoma matsutake Strains that Promote Mycorrhization and Growth of Pinus densiflora Seedlings (균근 형성과 소나무 유묘 생장이 우수한 송이 균주의 선발)

  • Jeon, Sung-Min;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.155-165
    • /
    • 2016
  • Domestic and international production of Tricholoma matsutake has decreased owing to matsutake forests being left alone, host plant disease, forest fires, climate change, and so on. In order to identify strains that are suitable for the production of T. matsutake-inoculated seedlings, Pinus densiflora seedlings were inoculated with T. matsutake after in vitro rooting and mycorrhization was examined in the roots of T. matsutake-inoculated seedlings after 6 months. The mycorrhization rate was greater than 80% for 5 strains (NIFoS 421, 434, 1681, 1984, and 2001) out of 19 total strains. Seven strains (NIFoS 434, 441, 561, 562, 1016, 1807, and 1812) showed shoot/root ratios of less than 3.0 and had a seedling shoot biomass of 2.0 to 4.8 times higher than that of the root. Eight strains (NIFoS 441, 561, 562, 1016, 1807, 1812, 1984, and 2001) stimulated increases in shoot volume and three stains (NIFoS 441, 562, and 1812) promoted the growth of root biomass by mycorrhizal formation. In conclusion, 4 strains (NIFoS 434, 561, 1984, and 2001) out of 19 total strains tested showed higher mycorrhization rates and seedling growth than those of the other strains. We expect that the use of these four strains may contribute to T. matsutake-inoculated seedling production.

Estimation of Carbon Storages and Fluxes by Ecosystem Type in Korea (국내 생태계 유형별 탄소 저장 및 거동 산정 연구 현황 분석)

  • Inyoung Jang;Heon Mo Jeong;Sang-Hak Han;Na-Hyun Ahn;Dukyeop Kim;Sung-Ryong Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.417-425
    • /
    • 2023
  • As climate change gets severe, the ecosystem acts as an important carbon sink, therefore efforts are being made to utilize these functions to mitigate climate change. In this study, we inventoried and analyzed the previous studies related to carbon storage and flux by ecosystem type (forest, cropland, wetland, grassland, and settlement) and carbon pool (aboveground and belowground biomass, dead wood, Litter, soil organic carbon, and ecosystem) in Korean ecosystems. We also collected the results of previous studies and calculated the average value of carbon storage and flux for each ecosystem type and carbon pool. As a result, we found that most (66%) of Korea's carbon storage and fluxes studies were conducted in forests. Based on the results of forest studies, we estimated the storage by carbon stock. We found that much carbon is stored in vegetation (aboveground: 4,018.32 gC m-2 and belowground biomass: 4,095.63 gC m-2) and soil (4,159.43 gC m-2). In particular, a large amount of carbon is stored in the forest understory. For other ecosystem types, it was impossible to determine each carbon pool's storage and flux due to data limitations. However, in the case of soil organic carbon storage, the data for forests and grasslands were comparable, showing that both ecosystems store relatively similar amounts of carbon (4,159.43 gC m-2, 4,023.23 gC m-2, respectively). This study confirms the need to study carbon in rather diverse ecosystem types.

Effect of Mineral Nutrient Contents and Growth on the Damages of Organic Apple Trees (사과 유기재배 시 무기성분 함량과 수체생장과 피해에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.587-602
    • /
    • 2017
  • Correlations of soil and leaf nutrients and growth of young 'Enterprise' apple (Malus ${\times}$ domestica Borkh.) trees were analyzed with tree damage, such as Japanese beetle (JB; Popillia japonica Newman)-damaged leaves, vole damage to trunk, tree mortality, and weed density in a certified organic orchard in warm and humid environment of Southern USA. Interaction treatments of four mulch and three fertilizers were applied around trees as follows: mow-and-blow (MB), shredded paper (SP), wood chips (WC), and green compost (GC) as a mulch, with no fertilizer (NF), poultry litter (PL), and commercial organic fertilizer (CF) as a fertilizer applied in April. Vole damage to trunk and weed density were little correlated with mineral nutrients and tree growth. JB-damaged leaves were highly stimulated to 26.5% in GC-treated plots while tree mortality were increased by MB treatments. Biomass production per tree was approximately 3,700 g on the WC- and GC-treated plots, which was two times higher than those values observed on the other two mulch plots. JB-damaged leaves tended to get worse when nutrients in soil and leaf increased through the correlation analysis, with a strong positive relationship ($r^2=0.585$) observed between JB-damaged leaves and trunk cross sectional area, a vegetative indicator. Tree mortality was more negatively associated with nutrient contents and growth of trees than those of soil nutrients. Wood chips was considered for a local organic mulch materials to increase organic matter contents and to produce healthy young trees in Southern USA, with control insect, such as beetle, and vole density in an orchard habitat.

Removal Characteristics of Natural Organic Matters in Activated Carbon and Biofiltration Process (활성탄 공정과 생물여과 공정에서의 자연유기물질 제거특성)

  • Son, Hee-Jong;Choi, Keun-Joo;Kim, Sang-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.205-213
    • /
    • 2007
  • We have studied NOM(natural organic matters) adsorption and biodegradation on 3 kinds of activated carbon and a anthracite. Coal based activated carbon showed the highest DOC(dissolved organic carbon) adsorption capability and roconut(samchully), wood (pica) in the order among the 3 kinds of activated carbon(F400). The biomass amount and activity also showed on coal, wood and coconut based activated carbon in the order. Over 15 minutes EBCT(empty bed contact time) needed to achieve 10 to 17% average removal efficiency and $18\sim24%$ maximum removal efficiency of NOM biodegradation in biofilter using anthracite. Hydrophobic and below 10,000 dalton NOM was much easier to adsorb into the activated carbon than hydrophilic NOM, THMFP(trihalomethane formation potential) and BDOC (biodegradable dissolved organic carbon)$_{slow}$ were much easier than HAA5FP(haloacetic acid 5 formation potential) and $BDOC_{rapid}$ to adsorb into the activated carbon. Hydrophilic and below 1,000 dalton NOM was much easily biodegraded and HAA5FP and $BDOC_{rapid}$ was easier than THMFT and $BDOC_{slow}$ to biodegrade in the biofilter.

Mycelial Growth and in vitro Ectomycorrhizal Synthesis on Pinus densiflora Seedlings of Tricholoma bakamatsutake in Korea (한국산 가송이(가칭)의 균사생장 특성과 소나무에 외생균근 형성)

  • Jeon, Sung-Min;Ka, Kang-Hyeon;Hong, Ki-Sung
    • The Korean Journal of Mycology
    • /
    • v.42 no.4
    • /
    • pp.312-321
    • /
    • 2014
  • Tricholoma bakamatsutake is one of the edible ectomycorrhizal mushrooms as an allied species of Tricholoma matsutake. This is the first report on physical characteristics of T. bakamatsutake strains collected from Quercus mongolica forests in Korea. The pure cultures of these strains were isolated from the tissues of fruit bodies and the culture characteristics were investigated under different conditions (media, temperatures, nitrogen sources). Most strains showed the highest mycelial growth on potato dextrose agar (PDA) at 20 or $25^{\circ}C$. Two strains of T. bakamatsutake preferred the ammonium-form rather than the nitrate-form as an inorganic nitrogen source. T. bakamatsutake showed significantly slower mycelial growth when compared with T. matsutake from a Korean forest, although the optimum culture conditions for the two allied species were similar. We also tested the ability to form mycorrhizae as well as cellulase activity of T. bakamatsutake. All strains showed cellulase activity on a carboxymethylcellulose (CMC) agar plate. The mycorrhizae on axenic Pinus densiflora seedlings were formed by two strains of T. bakamatsutake after 3 or 8 months of inoculation. P. densiflora seedlings inoculated with T. bakamatsutake had a much higher biomass than un-inoculated seedlings.

Comparison of Quality Characteristics of Woodpellet Manufactured from Pinus densiflora S. et Z. and Pinus rigida Mill (소나무와 리기다소나무를 사용하여 제조한 목재펠릿의 품질 특성 비교)

  • Seo, Jun-Won;Lee, Eung-Su;Kang, Chan-Young;Kim, Si-Bak;Yoon, Yong Han;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.374-380
    • /
    • 2015
  • The quality characteristics of the woodpellet manufactured from two domestic pines (Pinus densiflora S. et Z. and Pinus rigida Mill.) were investigated for the efficient energy use of woody biomass resources. Properties of woodpellets such as moisture content, heating value, ash content, apparent density and durability were determined by using the standard test method of woodpellets of Korea Forest Research Institute (KFRI) and elemental analysis. The results of elemental analysis for C, H, O and N showed 61.42% carbon, 5.56% hydrogen, 32.87% oxygen, and 0.15% nitrogen for Pinus densiflora S. et Z. and 61.03% carbon, 5.96% hydrogen, 32.83% oxygen, and 0.18% nitrogen for Pinus rigida Mill. No significant difference between Pinus densiflora S. et Z. and Pinus rigida Mill was observed on elemental analysis. Heating values of each woodpellet were ranged from 19.00 to 19.42 MJ/kg which satisfied the first grade quality standard (${\geq}18.0MJ/kg$) by KFRI. The ash contents of woodpellet were slightly different between Pinus densiflora S. et Z. and Pinus rigida Mill., and satisfied the first grade quality standard (${\leq}0.7%$) by KFRI. Apparent density of woodpellet (Pinus densiflora S. et Z.) was passed the first grade standard level (${\geq}640kg/m^3$), and woodpellets from Pinus rigida Mill. satisfied the second grade quality of the standard. The moisture contents of each woodpellet were satisfied by the first grade quality standard (${\leq}10%$). The durability of woodpellet (Pinus densiflora S. et Z.) was passed the third grade level (${\geq}95%$), but Pinus rigida Mill. woodpellet was insufficient to satisfy the quality standard.

Enzymatic Hydrolysis of Rice Straw, a Lignocellulosic Biomass, by Extracellular Enzymes from Fomitopsis palustris (Fomitopsis palustris의 균체 외 효소에 의한 볏짚 당화에 관한 연구)

  • Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Kim, Tae-Jong;Kim, Nam-Hun;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.262-273
    • /
    • 2010
  • In the enzymatic hydrolysis of rice straw and wood meals using extra-cellular enzymes from Fomitopsis palustris, key factors which enhanced the sugar conversion yield were investigated in this work, such as enzyme production and enzyme reaction conditions, surfactant effects, and the surface structure of substrates. F. palustris cultured with softwood mixture produced 12.0 U/$m{\ell}$ for endo-${\beta}$-1,4-gulcanase (EG), 116.68 U/$m{\ell}$ for ${\beta}$-glucosidase (BGL), 18.82 U/$m{\ell}$ for cellobiohydrolase (CBH), and 13.33 U/$m{\ell}$ for ${\beta}$-xylosidase (BXL). These levels of BGL, CBH, and BXL activities were two to four folds more than enzyme activities of F. palustris cultured with rice straw. The optimum reaction conditions of cellulase-RS which produced by F. palustris with rice straw and cellulase-SW which produced by F. palustris with softwood mixture were pH 5.0 at $45^{\circ}C$ and pH 5.0 at $50^{\circ}C$, respectively. The sugar conversion yield of cellulase-SW had the highest value of $40.6{\pm}0.6%$ within 72 h when rice straw was used as substrate. By adding 0.1% Tween 20 (w/w-substrate), the sugar conversion yield of rice straw was increased to 44%, which was about four fifths sugar conversion yield of commercial enzyme, Celluclast 1.5L (Novozyme A/S). A low crystallinity and an intensive fibril surface observed by the scanning electron microscope may explain the high sugar conversion yield of rice straw.

Carbon Forestry: Scope and Benefit in Bangladesh

  • Rahman, Md. Siddiqur;Akter, Salena
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.249-256
    • /
    • 2013
  • The aim of the study was to reveal the scope and benefits derives from establishing carbon forests in a country like Bangladesh. Carbon forestry is the modernized forestry practice that evolves no cutting of trees or vegetation rather conserves them in the wood. Trees might be the source of carbon sink at large scale by establishing carbon forests. To find out how and in what extent forests of Bangladesh could contribute to global emission reduction, tree species of economic importance were taken into account about their carbon sequestration potential. Data source was a secondary one. Bangladesh has subtropical evergreen and deciduous forest tree species. Here trees can sequester almost 45-55 percent organic carbon in their biomass. On an average, trees in different types of stands can sequester 150-300 tC/ha. Carbon value of these forests might be 7,500-15,000 USD per hactre (assuming 50 USD per equivalent $tCO_2$). Thus, accounting tree carbon credits of total forested lands of Bangladesh, there might be a lump sum value of $1.89{\times}10^{10}-3.79{\times}10^{10}$ USD. If soil carbon is added, this amount would jump. Alternatively, there are two times higher spaces as marginal lands than this for starting carbon forestry. However, carbon forestry concept is still a theoretical conception unless otherwise their challenges are addressed and solved. Despite of this, forests of Bangladesh might be the key showcase for conserving biodiversity in association with carbon capture. Protected areas in Bangladesh are of government wealth, however, degraded and denuded waste and marginal lands might be the best fit for establishing carbon forests.