• Title/Summary/Keyword: Wood pellet boiler

Search Result 34, Processing Time 0.025 seconds

Emission Characteristics of Air Pollutants and Black Carbon from Wood-pellet Stove and Boiler (목재 펠릿 난로와 보일러 사용에 의한 대기오염물질과 블랙카본의 배출 특성)

  • Park, Sung Kyu;Lyu, Kun Jung;Kim, Daekeun;Kim, Dong Young;Jang, Young Kee;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2015
  • This study was carried out simulating domestic utilization conditions of a wood pellet stove and a wood pellet boiler in order to determine emission factors (EFs) of macro-pollutants, i.e., carbon monoxide, nitrogen oxides, sulfur oxides, ammonia, particulate matters (total suspended particulate, $PM_{10}$, $PM_{2.5}$, black carbon) and trace pollutants (i.e., ten different volatile organic compounds). The composite pollutants EFs for the pellet stove were: for TSP 4.58 g/kg, for $PM_{10}$ 3.35 g/kg, for $PM_{2.5}$ 2.48 g/kg, CO 119.23 g/kg, NO 14.40 g/kg, $SO_2$ 0.17 g/kg, TVOC 37.73 g/kg, $NH_3$ 0.02 g/kg and emissions were similar to the pellet boiler appliance: for TSP 4.73 g/kg, for $PM_{10}$ 3.41 g/kg, for $PM_{2.5}$ 2.63 g/kg, CO 161.51 g/kg, NO 13.67 g/kg, $SO_2$ 0.19 g/kg, TVOC 45.22 g/kg, $NH_3$ 0.02 g/kg.

Characteristics of Co-Combustion of Wood Pellet with Sub-Bituminus Coal in A Pilot CFB Combustor (Pilot 순환유동층 연소장치에서의 목재펠릿과 아역청탄 혼소 특성)

  • KIM, DONG WON;PARK, KYEONG IL;LEE, JONG MIN;BAE, YONG CHAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.436-447
    • /
    • 2019
  • The circulating fluidized bed boiler has an advantage that can burn a variety of fuels from low-grade fuel to coal. In this study, for the design of a circulating fluidized bed boiler using wood pellets, a circulating fluidized bed combustion test device using no external heater was manufactured and used. According to the increase of co-combustion rate with wood pellet, combustion fraction and heat flux by combustor height were measured and pollutant emission characteristics were analyzed. In terms of combustibility, the effect on primary and secondary air ratio were also studied. In addition, as a result of analysis of the effect of corrosive nanoparticles on the combustion of coal with wood pellets, it was confirmed that coal is mostly composed of Ca and S, whereas wood pellets are mostly composed of K, Cl, and Na.

The Control System of Wood Pellet Boiler Based on Home Networks (홈 네트워크 기반의 펠릿 활용 난방 보일러 제어시스템)

  • Lee, Sang-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • This paper presents the implementation of a control system of pellet boiler using wood pellet as carbon neutral material. The system also has the additional features to provide remote controlling and monitoring based on home networking technology through either public switched telephone networks or mobile communication networks. It consists of three kinds of sub-modules; a main controller provides basic and additional features such as a setting of temperature, a supplying of wood pellet, a controlling of ignition and fire-power, and a removing of soot. The second is temperature controller of individual rooms which is connected to the main controller through RS-485 links. And interface modules with PSTN and mobile networks can support remote controlling and monitoring the functions. The test results under the heating area of $172m^2$ show a thermal efficiency of 93.6%, a heating power of 20,640kcal/hr, and a fuel consumption of 5.54kg/hr. These results are superior to those of the conventional pellet boilers. In order to obtain the such high performance, we newly applied a 3-step ignition flow, a flame detection by $C_dS$ sensor, and a fire-power control by fine controlling of shutter to our pellet boiler.

Thermal Performance Analysis of Hybrid heat Supply System for Zero Carbon Green Home (제로카본 그린홈 구현을 위한 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.53-59
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000kcal/hr, a $0.15m^3$ hot water storage tank for space heating, a evacuated tubular solar collector $3.74m^2$ of aperture area at the $20^{\circ}$ install angle, a $0.3m^3$ hot water storage tank. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

A Study on Combustion Characteristics of wood pellets (목재 펠릿의 연소특성에 관한 연구)

  • Sim, Bong Seok;Kim, Hyouck Ju;Park, Hwa Choon;Kim, Jong Jin;Choi, Kyu Sung;Kang, Sae Byul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.104.1-104.1
    • /
    • 2010
  • We investigated combustion characteristics of wood pellets in a combustion equipment with adjusting amount of flue gas. Maximum temperature in a combustion chamber was $850^{\circ}C$. Higher heating Value of a domestic wood pellet tested is 19.1 MJ/kg and water content was 8.3%. Amount of flue gas causes big effect on burning characteristics in $450{\sim}600^{\circ}C$. Wood pellet does not burn in low temperature atmosphere less than $450^{\circ}C$ and low flue gas flow rate. We made burning the pellet that is made in Korea, USA, Chile and Canada. Color of foreign pellets are bright brown and they made by mainly sawdust. Korean pellet is a dark brown color because it contains bark. There are some differences in the result of elementary analysis and technical analysis. According to the result of burning experiment, burning times of each countries's pellet are similar.

  • PDF

The Effect of Supply Patterns of Overfire Air on Generation of NOX and CO in a Wood pellet Fired Boiler (우드펠릿 보일러에서 2단 연소용 공기 공급방식이 질소산화물 및 일산화탄소 발생에 미치는 영향)

  • Jung, Kwang-sung;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.3
    • /
    • pp.35-41
    • /
    • 2019
  • In this study, we investigated the effect of the generation of NOx and CO by adjusting the overfire air supply position and ratio using the boiler that was converted from coal burning to wood pellet boiler. When the amount of the overfire air is relatively increased, the amount of NOx is slightly decreased but CO is sharply decreased when burning at low excess air ratio (1.10) that is due to a small fuel particle size. However, NOx slightly increased when burning at high excess air ratio (1.33) due to the large fuel size, but CO was hardly affected. Also, When the amount of overfire air was same, The more supply position was concentrated to upper portion of the main combustor, the more NOx and CO was lowered. And in case of the excess air ratio was high, the generation of NOx and CO I can see that it keeps the level irrelevant to the amount of air for the second stage combustion.

Development of a Movable Pellet Manufacturing Equipment (이동식 펠릿 제조장비 개발에 대한 연구)

  • Jho, Shi Gie;Kum, Sungmin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.13-19
    • /
    • 2015
  • The wood pellet is standardized of woody type fuel which of small cylindrical shape that is produced compress wood remnants in process of woody processing. The pellet is critical energy which expects to increase of the amount used in future. It consumes fuel which of home, common facilities stove and boiler, district heating, and CHP, etc. This study was to develop a movable pellet manufacturing equipment that can be mounted on a truck. The pellet production volume is approximately 309kg per hour, daily output is about 2ton. One days work based on the expected revenue of approximately \268,000 feasibility is considered sufficient.

CFD (Computational Fluid Dynamics) Study on Partial-Load Combustion Characteristics of a 4-Step-Grate Wood Pellet Boiler (4단 화격자 목재 펠릿 보일러의 부분부하 연소해석)

  • Ahn, Joon;Jang, Jun Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • A numerical simulation was conducted for the combustion chamber of a 4-step grate-firing boiler for wood pellet fuel. The flame is extended to the exit of combustion chamber, which is reproduced by present numerical method based on a homogeneous reaction model. Flow field from the simulation shows a strong recirculation flow at the upstream corner of the chamber, along which the flame is extended to the exit. These combustion and flow characteristics remain unchanged for partial load operations, which suggest modification of the combustion chamber structure rather than resizing should be effective to improve combustion characteristics. Possible modifications for combustion chamber are suggested such as relocating its exit, increasing the number of grate steps or installing internals such as guide baffles.

A Study on The Flame Stability of Pellet Combustor Using Swirling Flow (선회유동을 이용한 펠릿연소기의 화염안정화 연구)

  • Lee, Do-Hyung;Yun, Bong-Seok;Wang, Zhen-Wei
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.35-41
    • /
    • 2014
  • The wood pellet, which is one of the woody biomass energy, has very high economic efficiency and combustion efficiency during their combustion. The existing pellet burner have many problems such as low combustion efficiency, flame stabilization, ash problem and ignition time etc. We developed cyclonic wood pellet burner aim to 20,000kcal/hr boiler and measured temperature profiles and exhaust gases in order to investigate the flame stability and optimum combustion condition at any air flow conditions. As results, we confirmed the reappearance and the isotropy of the experimental results in the burner. At the first air flow inlet condition of excess air ratio ${\alpha}=0.02$, second air flow $490{\ell}/min$ had the best combustion condition when pellet supplied 30g. This result means that we need much air supply only for the swirling of second air flow. So we tested various second air flux at first air excess air ratio ${\alpha}=0.7$ condition. At this condition, we could find out that we don't need much second air and total air flux compared to the former condition. We will continuously test this work of air flow distribution, and swirl effect of first air flow, and ash elimination.