• Title/Summary/Keyword: Wood frame

Search Result 142, Processing Time 0.016 seconds

Properties of Indigenous Korean Paper(Hanji) - Classification of Oebal(single frame)Papermaking Methods - (토착한지의 특성 - 외발 초지법 분류를 중심으로 -)

  • Cheon, Cheol;Kim, Seong-Ju;Jin, Young-Mun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.88-104
    • /
    • 1999
  • This study was carried out to classify the Hanjis into three groups that were indigenous Hanji, traditional Hanji, and improved Hanji handmade by paper making method according to the physical properties of each paper sheet such as tensile, bursting and tearing strength, folding endurance and fiber orientation in each layer. The results obtained were summarized as follows: 1. The multi-layered Hanjis made by "Oebal" Hanji making method in different direction of fiber orientation have good properties in tearing resistance. 2. The multi-layered Hanji in different direction of fiber orientation has good properties in the tearing resistance, but the burst index and the breaking length results were lower than the single layered Hanjis. 3. The different fiber orientation and multi-layered method didn't increase, the three indexes(burst index, tear index, breaking length). Only, the different direction of fiber orientation decreased the difference of width and length strength (tensile, tear) of the Hanji. 4. "Dochim"(Korean finishing touch process for indigenous Hanji by fulling round sticks) greatly increase folding endurance(double folds, not $log_{10}$) and good effect to tensile strength and burst strength. 5. The today's Oebal Hanji were the maximum of 2 layers and the indigenous Oebal Hanji were 16 layers the maximum. In addition, average of the indigenous Oebal Hanji was 4 layers(all 4-layer Hanji were the different fiber orientation of each layer). 6, The indigenous Hanji(multi-layered, and different fiber orientation) was good condition with "Dochim". Dochim increased tensile strength and burst strength of the indigenous Hanji. So the three-strength indexes were similar level("--"). 7. When the number of layer which were same fiber orientation increase, the increased Hanji became similar strength pattern("V", breaking length and burst index was higher than tear index) with "Ssangbal" Hanji. 8. The single layered papers that made by "Oebal" Hanji making method were similar strength pattern with Ssangbal Hanji. 9. There was no way to find the width and length direction of multi-layered Hanji by comparison between the difference of tensile strength and the difference of tearing resistance. 10. The compared pattern of tensile strength and tearing resistance of indigenous Oebal Hanji was different from today's Oebal Hanji. Especially, the tearing resistance of all indigenous Oebal Hanji(16 samples) was stronger on width of tearing resistance. And in the half of indigenous Oebal Hanji samples, the width of tensile strength and tearing resistance was stronger than length strength (Indigenous Oebal: '$\ulcorner\lrcorner$' 50%, '$\bigcup$' 50% $\leftrightarrow$ Today's Oebal: '$\ulcorner\lrcorner$' 12%, '$\bigcup$'6%, '$\llcorner\urcorner$'17%, '$\bigcap$'65%). In 65% today's Oebal, the length direction of tensile strength and tearing resistance was stronger than the width direction.

  • PDF

A Study on the Excavated Sab(a funeral fan) from Lime-filled Tomb and Lime-layered Tomb during the Joseon Dynasty (조선시대 회격·회곽묘 출토 삽(翣)에 대한 고찰)

  • Yi, Seung Hae;An, Bo Yeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.41 no.2
    • /
    • pp.43-59
    • /
    • 2008
  • Sap(?, a funeral fan) is a funeral ceremonial object used in association with a Confucian ceremonial custom, which was crafted by making a wooden frame, attaching a white cloth or a thick paper onto it, drawing pictures on it, and making a holder for a handle. According to Liji(Records of Rites), Sap was used since the Zhou Dynasty, and these Chinese Sap examples are no big different than the Korean Sap examples, which were described in Joseon Wangjo Sillok(Annals of the Joseon Dynasty), Gukjo Oryeui(the Five Rites of the State), and Sarye Pyeollam(Handbook on Four Rituals). This study explored Sap excavated in lime-filled tombs and lime-layered tombs of aristocrats dating back to Joseon, as well as their historical records to examine Sap's characteristics according to their examples, manufacturing methods, and use time. The number and designs of Sap varied according to the deceased' social status aristocrats used mainly one pair of 亞-shaped Bulsap, and a pair of Hwasap with a cloud design depicted on it. A Sap was wrapped twice with Chojuji paper or Jeojuji paper, and for the third time with Yeonchangji paper. Then, it was covered with a white ramie, a hemp, a cotton, a silk satin, etc. Bobul(an axe shape and 亞-shape design) was drawn on both sides of Sap, and a rising current of cloud was drawn at the peripheral area mainly with red or scarlet pigments. Sap, which were excavated from aristocrats'lime-filled and lime-layered tombs, are the type of Sap which were separated from its handle. These excavated Sap are those whose long handles were burnt during the death carriage procession, leaving Sap, which later were erected on both sides of the coffin. The manufacturing process of excavated relics can be inferred by examining them. The excavated relics are classified into those with three points and those with two points according to the number of point. Of the three-point type(Type I), there is the kind of relic that was woven into something like a basket by using a whole wood plate or cutting bamboo into flat shapes. The three-point Sap was concentrated comparatively in the early half of Joseon, and was manufactured with various methods compared with its rather unified overall shape. In the meantime, the two-point Sap was manufactured with a relatively formatted method; its body was manufactured in the form of a rectangle or a reverse trapezoid, and then its upper parts with two points hanging from them were connected, and the top surface was made into a curve(Type II) or a straight line(Type III) differentiating it from the three-point type. This manufacturing method, compared with that of the three-point type, is simple, but is not greatly different from the three-point type manufacturing method. In particular, the method of crafting the top surface into a straight line has been used until today. Of the examined 30 Sap examples, those whose production years were made known from the buried persons'death years inscribed on the tomb stones, were reexamined, indicating that type I was concentrated in the first half of the $16^{th}$ century. Type II spanned from the second half of the $16^{th}$ century to the second half of the $17^{th}$ century, and type III spanned from the first half of the $17^{th}$ century to the first half of the $18^{th}$ century. The shape of Sap is deemed to have changed from type I to type II and again from type II to type III In the $17^{th}$ century, which was a time of change, types II and III coexisted. Of the three types of Sap, types II and III re similar because they have two points; thus a noteworthy transit time is thought to have been the middle of the $16^{th}$ century. Type I compared with types II and III is thought to have required more efforts and skills in the production process, and as time passed, the shape and manufacturing methods of Sap are presumed to have been further simplified according to the principle of economy. The simplification of funeral ceremonies is presumed to have been furthered after Imjinwaeran(Japanese invasion of Joseon, 1592~1598), given that as shown in the Annals of King Seonjo, state funerals were suspended several times. In the case of Sap, simplification began from the second half of the $16^{th}$ century, and even in the $18^{th}$ century, rather than separately crafting Sap, Sap was directly drawn on the coffin cover and the coffin. However, in this simplification of form, regulations on the use of Sap specified in Liji were observed, and thus the ceremony was rationally simplified.