• Title/Summary/Keyword: Wood biomass

Search Result 408, Processing Time 0.021 seconds

Development of a Movable Pellet Manufacturing Equipment (이동식 펠릿 제조장비 개발에 대한 연구)

  • Jho, Shi Gie;Kum, Sungmin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.13-19
    • /
    • 2015
  • The wood pellet is standardized of woody type fuel which of small cylindrical shape that is produced compress wood remnants in process of woody processing. The pellet is critical energy which expects to increase of the amount used in future. It consumes fuel which of home, common facilities stove and boiler, district heating, and CHP, etc. This study was to develop a movable pellet manufacturing equipment that can be mounted on a truck. The pellet production volume is approximately 309kg per hour, daily output is about 2ton. One days work based on the expected revenue of approximately \268,000 feasibility is considered sufficient.

Effect of Process Parameters and Kraft Lignin Additive on The Mechanical Properties of Miscanthus Pellets

  • Min, Chang Ha;Um, Byung Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.703-719
    • /
    • 2017
  • Miscanthus had a higher lignin content (19.5 wt%) and carbohydrate (67.6 wt%) than other herbaceous crops, resulting in higher pellet strength and positive effect on combustion. However, miscanthus also contains a high amount of hydrophobic waxes on its outer surface, cuticula, which limits the pellet quality. The glass transition of lignin and cuticula were related to forming inter-particle bonding, which determined mechanical properties of pellet. To determine the effects of surface waxes, both on the pelletizing process and the pellet strength were compared with raw and extracted samples through solvent extraction. In addition, to clarify the relationship between pellet process parameters and bonding mechanisms, the particle size and temperature are varied while maintaining the moisture content of the materials and the die pressure at constant values. Furthermore, kraft lignin was employed to determine the effect of kraft lignin as an additive in the pellets. As results, the removal of cuticula through ethanol extractions improved the mechanical properties of the pellet by the formation of strong inter-particle interactions. Interestingly, the presence of lignin in miscanthus improves its mechanical properties and decreases friction against the inner die at temperatures above the glass transition temperature ($T_g$) of lignin. Consequently, it could found that the use of kraft lignin as an additive in pellet reduced friction in the inner die upon reaching its glass transition temperature.

Effect of Bark Content and Densification Temperature on The Properties of Oil Palm Trunk-Based Pellets

  • Wistara, Nyoman J;Rohmatullah, Moh Arif;Febrianto, Fauzi;Pari, Gustan;Lee, Seung-Hwan;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.671-681
    • /
    • 2017
  • Oil palm trunk (OPT) is a potential source of biomass for the production of biopellet. In the present research, biopellet were prepared from the meristem part of 25 years old OPT with various percentages of its bark (0, 10, and 30%). The highest biopellet durability was found for biopellet produced at $130^{\circ}C$ of pelletizing temperature with 30% bark content. Scanning electron microscopy (SEM) of biopellet showed the weak of particle bonding due to the low pelletizing pressure. The moisture content, unit density, ash content, and caloric value of OPT-based pellets were 3.55-5.35%, $525.56-855.23kg/m^3$, 2.76-3.44%, and 17.89-19.14 MJ/kg, respectively. The combustion profiles obtained by thermogravimetric analysis (TGA) seemed to be unaffected by the bark content on. Differential thermal analysis of TGA curve indicated different pyrolysis characteristic of hemicellulose, cellulose, and lignin.

Optimization of in Vitro Cultivation of Inonotus Obliquus

  • Cho, Nam-Seok;Shin, Yu-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.92-98
    • /
    • 2005
  • This study was performed to get the basic information concerned to the optimum culture condition of Inonotus obliquus. Several solid media, PDA, MEA and Czapek-Dox, and three liquid media were adopted for the in vitro cultivation. Some main features of the fungal morphological characteristics under cultivation conditions were observed and described. Preliminary results showed that appearance of the mycelial mat, hyphal size and substrate pigmentation differed according to the media. The PDA medium was the most favorable substrate for the growth on solid culture, followed by MEA and Czapek-Dox media. Concerned to the addition of amino acids, 5 amino acids, such as alanine, alginine, isoleucine, leucine and threonine, enhanced to the mycelial growth. Isoleucine was shown the best fungal growth. An important morphological hyphal structure for the fungus, the setae, was found in abundance and diverse its shape and size. In liquid culture, fresh potato broth was the best growth stimulant of the fungus, followed by Malt extract and potato broth. Addition of yeast extract to the liquid media had improved the biomass, but not laccase production.

Optimization of Alkali Pretreatment from Steam Exploded Barley Husk to Enhance Glucose Fraction Using Response Surface Methodology

  • Jung, Ji Young;Ha, Si Young;Park, Jai Hyun;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.182-194
    • /
    • 2017
  • The optimum alkali pretreatment parameters (reaction time, reaction temperature and potassium hydroxide concentration) for facilitate the conversion into fermentable sugar (glucose) from steam exploded (severity log Ro 2.45) barley husk were determined using Response Surface Methodology (RSM) based on a factorial Central Composite Design (CCD). The prediction of the response was carried out by a second-order polynomial model and regression analysis revealed that more than 88% of the variation can be explained by the models. The optimum conditions for maximum cellulose content were determined to be 201 min reaction time, $124^{\circ}C$ reaction temperature and 0.9% potassium hydroxide concentration. This data shows that the actual value obtained was similar to the predicted value calculated from the model. The pretreated barley husk using acid hydrolysis resulted in a glucose conversion of 94.6%. This research of steam explosion and alkali pretreatment was a promising method to improve cellulose-rich residue for lignocellulosic biomass.

Conversion of Glucose and Xylose to 5-Hydroxymethyl furfural, Furfural, and Levulinic Acid Using Ethanol Organosolv Pretreatment under Various Conditions

  • Ki-Seob, GWAK;Chae-Hwi, YOON;Jong-Chan, KIM;Jong-Hwa, KIM;Young-Min, CHO;In-Gyu, CHOI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.475-489
    • /
    • 2022
  • The objective of this study was to understand the conversion characteristics of glucose and xylose using the major monosaccharide standards for lignocellulosic biomass. The acid-catalyzed organosolv pretreatment conducted using ethanol was significantly different from the acid-catalyzed process conducted in an aqueous medium. 5-hydroxymethylfurfural (5-HMF), levulinic acid and furfural were produced from glucose conversion. The maximum yield of 5-HMF was 5.5%, at 200℃, when 0.5% sulfuric acid was used. The maximum yield of levulinic acid was 21.5%, at 220℃, when 1.0% sulfuric acid was used. Furfural was produced from xylose conversion and under 0.5% sulfuric acid, furfural reached the maximum yield 48.5% at 210℃. Ethyl levulinate and methyl levulinate were also formed from the glucose standard following the esterification reaction conducted under conditions of the combined conversion method, which proceeded under both ethanol-rich and water-rich conditions.

Propagation by Leafy Stem Cuttings Containing Xylem of Populus alba × P. glandulosa Clone Bongwha1

  • Hak Gon, Kim;Seong Hyeon, Yong;Hyung Ho, Kim;Myung Suk, Choi
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.249-255
    • /
    • 2022
  • The study was conducted to establish a method for the proliferation of hybrid poplar (P. alba × P. glandulosa) clone Bongwha1, an excellent biomass species. It was found that to collect the cuttings of Bonghwa1, it was necessary to use the main stem rather than the axillary branch. Stem growth by green-wood cuttings showed a tendency to decrease as the length of the collected cuttings increased, but the survival rate was low. Therefore, modified leafy stem cutting was attempted to increase the survival rate of the cuttings. In the modified leafy stem cutting method, 4 leaves were included in the cuttings, and especially, cuttings were performed using cuttings containing 2-4 cm xylem parts. Leafy stem cutting increased root growth and the number of stems, as well as the survival rate of hybrid poplar clone Bongwha1 compared to green-wood cuttings. The root growth of the leafy stem cutting poplar was better as there was more xylem part. Using two-year-old nursery stocks, the leafy stem cutting was used to produce about 66 cuttings. This study is expected to contribute to the mass propagation of high-quality nursery stocks.

Study of Characterization of Activated Carbon from Coconut Shells on Various Particle Scales as Filler Agent in Composite Materials

  • DUNGANI, Rudi;MUNAWAR, Sasa Sofyan;KARLIATI, Tati;MALIK, Jamaludin;ADITIAWATI, Pingkan;SULISTYONO, SULISTYONO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.256-271
    • /
    • 2022
  • Activated carbon (AC) derived from coconut shells (CS-AC) was obtained through pyrolysis at 700℃ and subsequently activated with H3PO4. AC was ground in a Wiley mill several times to form powder particles at particle scales of 80, 100, and 200 meshes. The characterization of the AC was studied using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT-IR), and surface area analysis (SBET). The CS-AC-200 mesh resulted in a higher percentage of mesopores and surface area. This particle size had a larger surface area with angular, irregular, and crushed shapes in the SEM view. The smaller particles had smoother surfaces, less wear, and increased curing depth and ratio of the hardness of the resin composite. Based on the characterization results of the AC, it is evident that CS-AC with a 200 mesh particle size has the potential to be used as a filler in biocomposites.

Cationized Lignin Loaded Alginate Beads for Efficient Cr(VI) Removal

  • Jungkyu KIM;YunJin KIM;Seungoh JUNG;Heecheol YUN;Hwanmyeong YEO;In-Gyu CHOI;Hyo Won KWAK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.321-333
    • /
    • 2023
  • In this study, lignin, a lignocellulosic biomass, was chemically modified to produce polyethyleneimine-grafted lignin (PKL) with maximum hexavalent chromium [Cr(VI)] adsorption capacity. Changes in the physicochemical properties due to the cationization of lignin were confirmed through elemental analysis, Fourier transform infrared spectroscopy, and moisture stability evaluation. Alginate (Alg) beads containing PKL (Alg/PKL) were prepared by incorporating cationic lignin into the Alg matrix to apply the prepared PKL in a batch-type water treatment process. The optimal Alg/lignin mixing ratio was selected to increase the Cr(VI) adsorption capacity and minimize lignin elution from the aqueous system. The selected Alg/PKL beads exhibited an excellent Cr(VI) removal capacity of 478.98 mg/g. Isothermal adsorption and thermodynamic analysis revealed that the Cr(VI) removal behavior of the Alg/PKL beads was similar to that of heterogeneous chemical adsorption. In addition, the bulk adsorbent material in the form of beads exhibited adsorption behavior in three stages: surface adsorption, diffusion, and equilibrium.

Improving the Calorific Value of Nyamplung (Calophyllum inophyllum L.) Seed Shell Pellets by Torrefaction Treatment for Their Use as a Renewable Energy Resource

  • Johanes Pramana Gentur SUTAPA;Geraldy KIANTA;Budi LEKSONO;Ahmad Harun HIDAYATULLAH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.363-374
    • /
    • 2024
  • Nyamplung (Calophyllum inophyllum L.) seeds, which account for 40% of the fruit, have been used as a raw material for biofuels, and the seed shells remaining after their extraction are wasted. In this study, we investigated the potential of waste Nyamplung seed shells in the form of pellets as a biomass energy resource. A completely randomized research design was implemented to evaluate the effects of torrefaction and heat treatment on the quality of produced pellets. Two observed treatments, namely, particle size (0.18-0.25, 0.25-0.43, and 0.43-0.84 mm) and torrefaction temperature (200℃, 225℃, and 250℃), were investigated. Our results showed that the calorific value of torrefied Nyamplung seed-shell pellets ranged from 4,245.60 to 4,528.00 cal/g, fulfilling the Indonesia Nasional Standard (≥ 4,000 cal/g). The quality of pellets were the best when produced from raw materials with a particle size of 0.18-0.25 mm and torrefaction temperature of 225℃. Thus, we concluded that waste Nyamplung seed shells are a good raw material for the production of pellets.