DOI QR코드

DOI QR Code

Effect of Process Parameters and Kraft Lignin Additive on The Mechanical Properties of Miscanthus Pellets

  • Min, Chang Ha (Department of Chemical Engineering and Research Center of Chemical Technology Hankyong National University) ;
  • Um, Byung Hwan (Department of Chemical Engineering and Research Center of Chemical Technology Hankyong National University)
  • Received : 2017.07.04
  • Accepted : 2017.08.20
  • Published : 2017.11.25

Abstract

Miscanthus had a higher lignin content (19.5 wt%) and carbohydrate (67.6 wt%) than other herbaceous crops, resulting in higher pellet strength and positive effect on combustion. However, miscanthus also contains a high amount of hydrophobic waxes on its outer surface, cuticula, which limits the pellet quality. The glass transition of lignin and cuticula were related to forming inter-particle bonding, which determined mechanical properties of pellet. To determine the effects of surface waxes, both on the pelletizing process and the pellet strength were compared with raw and extracted samples through solvent extraction. In addition, to clarify the relationship between pellet process parameters and bonding mechanisms, the particle size and temperature are varied while maintaining the moisture content of the materials and the die pressure at constant values. Furthermore, kraft lignin was employed to determine the effect of kraft lignin as an additive in the pellets. As results, the removal of cuticula through ethanol extractions improved the mechanical properties of the pellet by the formation of strong inter-particle interactions. Interestingly, the presence of lignin in miscanthus improves its mechanical properties and decreases friction against the inner die at temperatures above the glass transition temperature ($T_g$) of lignin. Consequently, it could found that the use of kraft lignin as an additive in pellet reduced friction in the inner die upon reaching its glass transition temperature.

Keywords

References

  1. Berghel, J., Frodeson, S., Granstrom, K., Renstrom, R., Stahl, M., Nordgren, D., Tomani, P. 2008. The effects of kraft lignin additives on wood fuel pellet quality, energy use and shelf life. Fuel Processing Technology 112: 64-69.
  2. Bouajila, J., Dole, P., Joly, C., Limare, A. 2006. Some laws of a lignin plasticization, Journal of Applied Polymer Science 102(2): 1445-1451. https://doi.org/10.1002/app.24299
  3. Brosse, N., Meng, X., Sun, Q., Ragauskas, A. 2012. Miscanthus: a fast-growing crop for biofuels and chemicals production, Biofuels. Bioproducts, and Biorefining 6(5): 580-598. https://doi.org/10.1002/bbb.1353
  4. Buranov, A.U., Mazza, G. 2008. Lignin in straw of herbaceous crops. Industrial Crops and Products 28(3): 237-259. https://doi.org/10.1016/j.indcrop.2008.03.008
  5. Dubis, E.N., Dubis, A.T., Poplawski, J. 2001. Determination of the aromatic compounds in plant cuticular waxes using FT-IR spectroscopy, Journal of Molecular Structure 596(1-3): 83-88. https://doi.org/10.1016/S0022-2860(01)00691-3
  6. Ibarra, D., Rio, J.C.d., Gutierrez, A., Rodriguez, I.M., Romero, J., Martinez, M.a.J., Martinez, A.T. 2004. Isolation of high-purity residual lignins from eucalypt paper pulps by cellulase and proteinase treatments followed by solvent extraction. Enzyme and Microbial Technology 35(2-3): 173-181. https://doi.org/10.1016/j.enzmictec.2004.04.002
  7. Jurisic, V., Bilandzija, N., Kricka, T., Leto, J., Matin, A., Kuze, I. 2014. Fuel properties' comparison of allochthonous Miscanthus x giganteus and autochthonous Arundo donax L.: a study case in Croatia. Agriculturae Conspectus Scientificus (ACS) 79(1): 7-11.
  8. Kaliyan, N., Morey, R.V. 2009. Factors affecting strength and durability of densified biomass products. Biomass and bioenergy 33(3): 337-359. https://doi.org/10.1016/j.biombioe.2008.08.005
  9. Kaliyan, N., Morey, R.V. 2010. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology 101(3): 1082-1090. https://doi.org/10.1016/j.biortech.2009.08.064
  10. Kaltschmitt, M., Reinhardt, G., Stelzer, T. 1997. Life cycle analysis of biofuels under different environmental aspects. Biomass and Bioenergy 12(2): 121-134. https://doi.org/10.1016/S0961-9534(96)00071-2
  11. Kulig, R., Skonecki, S., Lysiak, G. 2012. The effect of binder addition on the parameters of compacted poplar wood sawdust. Teka Komisji Motoryzacji i Energetyki Rolnictwa 12(1): 303-309.
  12. Kuokkanen, M.J., Vilppo, T., Kuokkanen, T., Stoor, T., Niinimaki, J. 2011. Additives in wood pellet production-a pilot-scale study of binding agent usage. BioResources 6(4): 4331-4355.
  13. Lu, D., Tabil, L.G., Wang, D., Wang, G., Emami, S. 2014. Experimental trials to make wheat straw pellets with wood residue and binders. Biomass and Bioenergy 69: 287-296. https://doi.org/10.1016/j.biombioe.2014.07.029
  14. Mani, S., Tabil, L.G., Sokhansanj, S. 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy 30(7): 648-654. https://doi.org/10.1016/j.biombioe.2005.01.004
  15. Merk, S., Blume, A., Riederer, M. 1997. Phase behaviour and crystallinity of plant cuticular waxes studied by Fourier transform infrared spectroscopy. Planta 204(1): 44-53. https://doi.org/10.1007/s004250050228
  16. Moon, Y., Koo, B., Choi, Y., Ahn, S., Bark, S., Cha, Y., An, G., Kim, J., Suh, S. 2010. Development of Miscanthus the Promising Bioenergy Crop. Korean Journal of Weed Science 30(4): 330-339. https://doi.org/10.5660/KJWS.2010.30.4.330
  17. Nguyen, Q.N., Cloutier, A., Achim, A., Stevanovic, T. 2015. Effect of process parameters and raw material characteristics on physical and mechanical properties of wood pellets made from sugar maple particles. Biomass and Bioenergy 80: 338-349. https://doi.org/10.1016/j.biombioe.2015.06.010
  18. Nielsen, N.P.K., Gardner, D.J., Poulsen, T., Felby, C. 2009. Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood and Fiber Science 41(4): 414-425.
  19. Nilsson, D., Bernesson, S., Hansson, P.-A. 2011. Pellet production from agricultural raw materials-A systems study. Biomass and Bioenergy 35(1): 679-689. https://doi.org/10.1016/j.biombioe.2010.10.016
  20. Park, S.J., Moon, J.K., Um, B.H. 2013. Evaluation of the efficiency of solvent systems to remove acetic acid derived from pre-pulping extraction. Journal of the korean wood Science and Technology 41(5): 447-455. https://doi.org/10.5658/WOOD.2013.41.5.447
  21. Rabier, F., Temmerman, M., Bohm, T., Hartmann, H., Daugbjergjensen, P., Rathbauer, J., Carrasco, J., Fernandez, M. 2006. Particle density determination of pellets and briquettes. Biomass and Bioenergy 30(11): 954-963. https://doi.org/10.1016/j.biombioe.2006.06.006
  22. Rentizelas, A.A., Tolis, A.J., Tatsiopoulos, I.P., Logistics issues of biomass: the storage problem and the multi-biomass supply chain. Renewable and Sustainable Energy Reviews 13(4): 887-894. https://doi.org/10.1016/j.rser.2008.01.003
  23. Serrano, C., Monedero, E., Lapuerta, M., Portero, H. 2011. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology 92(3): 699-706. https://doi.org/10.1016/j.fuproc.2010.11.031
  24. Sikkema, R., Junginger, M., Pichler, W., Hayes, S., Faaij, A.P. 2010. The international logistics of wood pellets for heating and power production in Europe: Costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands. Biofuels, Bioproducts and Biorefining 4(2): 132-153. https://doi.org/10.1002/bbb.208
  25. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2008. Determination of structural carbohydrates and lignin in biomass. (NREL/TP-510-42619), National Renewable Energy Laboratory.
  26. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. 2008. Determination of extractives in biomass (NREL/TP-510-42619), National Renewable Energy Laboratory.
  27. Stelte, W., Clemons, C., Holm, J.K., Ahrenfeldt, J., Henriksen, U.B., Sanadi, A.R. 2012. Fuel pellets from wheat straw: The effect of lignin glass transition and surface waxes on pelletizing properties. BioEnergy Research 5(2): 450-458. https://doi.org/10.1007/s12155-011-9169-8
  28. Stelte, W., Clemons, C., Holm, J.K., Ahrenfeldt, J., Henriksen, U.B., Sanadi, A.R. 2011. Thermal transitions of the amorphous polymers in wheat straw. Industrial Crops and Products 34(1): 1053-1056. https://doi.org/10.1016/j.indcrop.2011.03.014
  29. Tarasov, D., Shahi, C., Leitch, M. 2013. Effect of Additives on Wood Pellet Physical and Thermal Characteristics: A Review. ISRN Forestry. 1-6.
  30. Tumuluru, J.S., Sokhansanj, S., Lim, C.J., Bi, T., Lau, A., Melin, S., Sowlati, T., Oveisi, E. 2010. Quality of wood pellets produced in British Columbia for export. Applied Engineering in Agriculture 26(6): 1013-1020. https://doi.org/10.13031/2013.35902
  31. Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G. 2010. An overview of the chemical composition of biomass. Fuel 89(5): 913-933. https://doi.org/10.1016/j.fuel.2009.10.022
  32. Villaverde, J.J., Domingues, R.M.A., Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Ligero, P., Vega, A. 2009. Miscanthus x giganteus Extractives: A Source of Valuable Phenolic Compounds and Sterols. Journal of Agricultural and Food Chemistry 57(9): 3626-3631. https://doi.org/10.1021/jf900071t
  33. Vishtal, A.G., Kraslawski, A. 2011. Challenges in industrial applications of technical lignins. BioResources 6(3): 3547-3568.