• 제목/요약/키워드: Wnt/${\beta}$-catenin signaling

Search Result 103, Processing Time 0.02 seconds

Protein Kinases Involved in the Regulation of Wnt/β-catenin Signaling (Wnt/β-catenin 신호를 조절하는 인산화 효소)

  • Shin, Eun-Young;Park, Edmond Changkyun;Hong, Yeonhee;Kim, Gun-Hwa
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.947-954
    • /
    • 2013
  • The Wnt/${\beta}$-catenin signaling pathway is an evolutionarily conserved signaling network that is critical for embryonic development and adult tissue maintenance. In addition, aberrant activation of Wnt/${\beta}$-catenin signaling is implicated in the formation of various human diseases, including cancers. Thus, study of the underlying molecular mechanism of Wnt/${\beta}$-catenin signaling regulation is important to understand and treat diseases. Inhibition of aberrant Wnt pathway activity in cancer cell lines efficiently blocks their growth, highlighting the great potential of therapeutics designed to achieve this in cancer patients. Recently, protein kinases have emerged as key regulating components of Wnt/${\beta}$-catenin signaling. In this review, we provide the most recent information on Wnt/${\beta}$-catenin signaling, describe protein kinases involved in Wnt/${\beta}$-catenin signaling, and discuss their potential as drug targets.

Silybin Synergizes with Wnt3a in Activation of the Wnt/${\beta}$-catenin Signaling Pathway through Stabilization of Intracellular ${\beta}$-Catenin Protein (Silybin에 의한 Wnt/${\beta}$-catenin 신호전달체계의 활성화)

  • Kim, Tae-Yeoun;Oh, Sang-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • The Wnt/${\beta}$-catenin signaling pathway regulates diverse developmental processes and adult tissue homeostasis. Inappropriate regulation of this pathway has been associated with human diseases, such as cancers, osteoporosis, and Alzheimer's disease. Using a cell-based chemical screening with natural compounds, we discovered silybin, a plant flavonoid isolated from the Silybum marianum, which activated the Wnt/${\beta}$-catenin signaling pathway in a synergy with Wnt3a-conditioned medium (Wnt3a-CM). In the presence of Wnt3a-CM, silybin up-regulated ${\beta}$-catenin response transcription (CRT) in HEK293-FL reporter cells and 3T3-L1 preadipocytes through stabilization of intracellular ${\beta}$-catenin protein. Silybin and Wnt3a-CM synergistically reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated $receptor{\gamma}$ ($PPAR{\gamma}$) and CAATT enhancer-binding protein ${\alpha}$ (C/$EBP{\alpha}$) in 3T3-L1 preadipocytes, accompanied by the activation of Wnt/${\beta}$-catenin signaling pathway. Taken together, our findings indicate that silybin is a small-molecule synergist of the Wnt/${\beta}$-catenin signaling pathway and can be used as a controllable reagent for investigating biological processes that involve the Wnt/${\beta}$-catenin signaling pathway.

Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review

  • Kim, Minseong;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.540-545
    • /
    • 2014
  • Balanced cell growth is crucial in animal development as well as tissue homeostasis. Concerted cross-regulation of multiple signaling pathways is essential for those purposes, and the dysregulation of signaling may lead to a variety of human diseases such as cancer. The time-honored Wnt/${\beta}$-catenin and recently identified Hippo signaling pathways are evolutionarily conserved in both Drosophila and mammals, and are generally considered as having positive and negative roles in cell proliferation, respectively. While most mainstream regulators of the Wnt/${\beta}$-catenin signaling pathway have been fairly well identified, the regulators of the Hippo pathway need to be more defined. The Hippo pathway controls organ size primarily by regulating cell contact inhibition. Recently, several cross-regulations occurring between the Wnt/${\beta}$-catenin and Hippo signaling pathways were determined through biochemical and genetic approaches. In the present mini-review, we mainly discuss the signal transduction mechanism of the Hippo signaling pathway, along with cross-talk between the regulators of the Wnt/${\beta}$-catenin and Hippo signaling pathways.

Opisthorchis viverrini Infection Activates the PI3K/AKT/PTEN and Wnt/β-catenin Signaling Pathways in a Cholangiocarcinogenesis Model

  • Yothaisong, Supak;Thanee, Malinee;Namwat, Nisana;Yongvanit, Puangrat;Boonmars, Thidarut;Puapairoj, Anucha;Loilome, Watcharin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10463-10468
    • /
    • 2015
  • Opisthorchis viverrini (Ov) infection is the major etiological factor for cholangiocarcinoma (CCA), especially in northeast Thailand. We have previously reported significant involvement of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin in human CCA tissues. The present study, therefore, examined the expression and activation of PI3K/AKT/PTEN and $Wnt/{\beta}$-catenin signaling components during Ov-induced cholangiocarcinogenesis in a hamster animal model. Hamsters were divided into two groups; non-treated and Ov plus NDMA treated. The results of immunohistochemical staining showed an upregulation of PI3K/AKT signaling as determined by elevated expression of the $p85{\alpha}$-regulatory and $p110{\alpha}$-catalytic subunits of PI3K as well as increased expression and activation of AKT during cholangiocarcinogenesis. Interestingly, the staining intensity of activated AKT (p-AKT) increased in the apical regions of the bile ducts and strong staining was detected where the liver fluke resides. Moreover, PTEN, a negative regulator of PI3K/AKT, was suppressed by decreased expression and increased phosphorylation during cholangiocarcinogenesis. We also detected upregulation of $Wnt/{\beta}$-catenin signaling as determined by increased positive staining of Wnt3, Wnt3a, Wnt5a, Wnt7b and ${\beta}$-catenin, corresponded with the period of cholangiocarcinogenesis. Furthermore, nuclear staining of ${\beta}$-catenin was observed in CCA tissues. Our results suggest the liver fluke infection causes chronic inflammatory conditions which lead to upregulation of the PI3K/AKT and $Wnt/{\beta}$-catenin signaling pathways which may drive CCA carcinogenesis. These results provide useful information for drug development, prevention and treatment of CCA.

Inhibition of Wnt Signaling by Silymarin in Human Colorectal Cancer Cells

  • Eo, Hyun Ji;Park, Gwang Hun;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.380-386
    • /
    • 2016
  • Silymarin from milk thistle (Silybum marianum) has been reported to show an anti-cancer activity. In previous study, we reported that silymarin induces cyclin D1 proteasomal degradation through NF-${\kappa}B$-mediated threonine-286 phosphorylation. However, mechanism for the inhibition of Wnt signaling by silymarin still remains unanswered. Thus, we investigated whether silymarin affects Wnt signaling in human colorectal cancer cells to elucidate the additional anti-cancer mechanism of silymarin. Transient transfection with a TOP and FOP FLASH luciferase construct indicated that silymarin suppressed the transcriptional activity of ${\beta}$-catenin/TCF. Silymarin treatment resulted in a decrease of intracellular ${\beta}$-catenin protein but not mRNA. The inhibition of proteasome by MG132 and $GSK3{\beta}$ inhibition by SB216763 blocked silymarin-mediated downregulation of ${\beta}$-catenin. In addition, silymarin increased phosphorylation of ${\beta}$-catenin and a point mutation of S33Y attenuated silymarin-mediated ${\beta}$-catenin downregulation. In addition, silymarin decreased TCF4 and increased Axin expression in both protein and mRNA level. From these results, we suggest that silymarin-mediated downregulation of ${\beta}$-catenin and TCF4 may result in the inhibition of Wnt signaling in human colorectal cancer cells.

SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway

  • Chen, Liang-Liang;Gao, Ge-Xin;Shen, Fei-Xia;Chen, Xiong;Gong, Xiao-Hua;Wu, Wen-Jun
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.853-867
    • /
    • 2018
  • As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the $Wnt/{\beta}-catenin$ signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, $Wnt/{\beta}-catenin$ signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated $Wnt/{\beta}-catenin$ signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the $Wnt/{\beta}-catenin$ signaling pathway. Besides, $si-{\beta}-catenin$ was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the $Wnt/{\beta}-catenin$ signaling pathway in human PTC.

Down-regulation of EZH2 by RNA Interference Inhibits Proliferation and Invasion of ACHN Cells via the Wnt/β-catenin Pathway

  • Yuan, Jun-Bin;Yang, Luo-Yan;Tang, Zheng-Yan;Zu, Xiong-Bing;Qi, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6197-6201
    • /
    • 2012
  • Although enhancer of zeste homolog 2 (EZH2) has been reported as an independent prognostic factor in renal cell carcinoma (RCC), little is known about the exact mechanism of EZH2 in promoting the genesis of RCC. However, several studies have shown that dysregulation of the Wnt/${\beta}$-catenin signaling pathway plays a crucial role. Therefore, we determined whether EZH2 could affect ACHN human RCC cell proliferation and invasion via the Wnt/${\beta}$-catenin pathway. In the present study, we investigated the effects of short interfering RNA (siRNA)-mediated EZH2 gene silencing on Wnt/${\beta}$-catenin signaling in ACHN cells. EZH2-siRNA markedly inhibited the proliferation and invasion capabilities of ACHN, while also reducing the expression of EZH2, Wnt3a and ${\beta}$-catenin. In contrast, cellular expression of GSK-$3{\beta}$ (glycogen synthase kinase-$3{\beta}$), an inhibitor of the Wnt/${\beta}$-catenin pathway, was conspicuously higher after transfection of EZH2 siRNA. These preliminary findings suggest EZH2 may promote proliferation and invasion of ACHN cells via action on the Wnt/${\beta}$-catenin signaling pathway.

Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young;Yang, Daum;Kim, Ha-Neui;Jung, Kyoung-Suk;Chang, Young-Il;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.53-59
    • /
    • 2009
  • Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

Clostridium difficile Toxin A Inhibits Wnt Signaling Pathway in Gut Epithelial Cells (대장상피세포 속 Wnt 신호 경로에 대한 C. difficile 톡신A의 영향)

  • Yoon, I Na;Kim, Ho
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1016-1021
    • /
    • 2018
  • Clostridium difficile toxin A causes pseudomembranous colitis. The pathogenesis of toxin A-induced colonic inflammation includes toxin A-dependent epithelial cell apoptosis, resulting in the loss of barrier function provided by epithelial cells against luminal pathogens. Toxin A-dependent epithelial cell apoptosis has been linked to toxin A-induced production of reaction oxygen species and subsequent p38MAPK activation; $p21^{CIP1/WAF1}$ upregulation-dependent cell cycle arrest; cytoskeletal disaggregation; and/or the induction of Fas ligand on epithelial cells. However, the molecular mechanisms underlying toxin A-induced apoptosis remain poorly understood. This study tested whether toxin A could block the Wnt signaling pathway, which is involved in gut epithelial cell proliferation, differentiation and antiapoptotic progression. Toxin A treatment of nontransformed human colonocytes (NCM460) rapidly reduced ${\beta}$-catenin protein, an essential component of the Wnt signaling pathway. Exposure of mouse ileum to toxin A also significantly reduced ${\beta}$-catenin protein levels. MG132 inhibition of proteasome-dependent protein degradation resulted in the recovery of toxin A-mediated reduction of ${\beta}$-catenin, indicating that toxin A may activate intracellular processes, such as $GSK3{\beta}$, to promote degradation of ${\beta}$-catenin. Immunoblot analysis showed that toxin A increased active phosphorylation of $GSK3{\beta}$. Because the Wnt signaling pathway is essential for gut epithelial cell proliferation and anti-apoptotic processes, our results suggest that toxin A-mediated inhibition of the Wnt signaling pathway may be required for maximal toxin A-induced apoptosis of gut epithelial cells.

Atractylochromene Is a Repressor of Wnt/β-Catenin Signaling in Colon Cancer Cells

  • Shim, Ah-Ram;Dong, Guang-Zhi;Lee, Hwa Jin;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.26-30
    • /
    • 2015
  • Wnt/${\beta}$-catenin signaling pathway was mutated in about 90% of the sporadic and hereditary colorectal cancers. The abnormally activated ${\beta}$-catenin increases the cancer cell proliferation, differentiation and metastasis through increasing the expression of its oncogenic target genes. In this study, we identified an inhibitor of ${\beta}$-catenin dependent Wnt pathway from rhizomes of Atractylodes macrocephala Koidzumi (Compositae). The active compound was purified by activity-guided purification and the structure was identified as 2,8-dimethyl-6-hydroxy-2-(4-methyl-3-pentenyl)-2H-chromene (atractylochromene, AC). AC suppressed b-catenin/Tcell factor transcriptional activity of HEK-293 reporter cells when they were stimulated by Wnt3a or inhibitor of glycogen synthase kinase-$3{\beta}$. AC down-regulated the nuclear level of ${\beta}$-catenin through the suppression of galectin-3 mediated nuclear translocation of ${\beta}$-catenin in SW-480 colon cancer cells. Furthermore, AC inhibits proliferation of colon cancer cell. Taken together, AC from A. macrocephala might be a potential chemotherapeutic agent for the prevention and treatment of human colon cancer.