• Title/Summary/Keyword: Withstand voltage test

Search Result 76, Processing Time 0.027 seconds

Field Application of AC High Voltage Test after Installation for EHV XLPE Power Cables (초고압 XLPE 전력케이블에 대한 설치후 교류내전압시험 현장적용)

  • Kim, Y.;Kwon, B.I.;Seong, J.K.;Han, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1768-1770
    • /
    • 2001
  • EHV power cables can take any damage during shipping, transportation, handling, storage and installation. As the damage influences a reliability of the power cable system in the short and long periods, field tests have been required, for installers, to confirm the reliability of an installed system and, for utilities, to make sure the compatibility of an installed system. Of field tests, a HV withstand test for the cable insulation has been performed to check the soundness of the insulation. For EHV XLPE power cables, the test has been done by applying a specified d.c voltage till lately. But as some problems with the d.c test is emphasized and the equipment for the a.c test is improved, the a.c test is considered positively as an after-installation test. This paper describes the recent trends of the a and its recent application in the field.

  • PDF

Study on the effect of DC voltage in oil-immersed transformer insulation system (DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구)

  • Jang, Hyo-Jae;Kim, Yong-Han;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF

Design of Insulation and Bending Test for a 154 kV Class HTS Cable (154 kV급 HTS 케이블의 절연설계 및 굴곡시험)

  • Choi, Jin-Wook;Choi, Jae-Hyeong;Lim, Eung-Choon;Kim, Hae-Jong;Cho, Jeon-Wook;Kim, Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1024-1028
    • /
    • 2008
  • It is important that study on cryogenic electrical insulation design to develop the cold dielectric(CD) type HTS cable because the cable is operated under the high voltage environment in cryogenic temperature. This paper proposes two types of insulation design to carry out the maximum insulation design for 154 kV-class HT cable. The proposed insulation design method takes into consideration AC and lightning impulse withstand voltage so as to prevent AC breakdown for power frequency operating voltage during operating the cable and breakdown for lightning impulse voltage. The final insulation thickness is determined by selecting high value out of two insulation thickness calculated through the two insulation design methods. And we researched electrical insulation characteristics of HTS cable according to bending ratio and the number of bending.

Seismic Qualification Test on Motor Control Center for Use in Nuclear Power Plants (원자력발전소용 Motor Control Center의 내진검증시험)

  • 김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.217-224
    • /
    • 1997
  • The safety related equipments for use in nuclear power plants should be subjected to the seismic qualification in order to insure the safety of the nuclear power plant. This paper summarizes the seismic qualification test on the Low Voltage Motor Control Centers(MCC's) for use in Wolsong Nuclear Power Plants, Units 2, 3 and 4. The seismic qualification test was performed on the two prototype MCC's(a two-bay wide unit for Phase #1 Test and a five-bay wide unit for Phase #2 Test). The specimens were electrically powered and monitored during the test process. It was demonstrated that the specimens possessed sufficient structural and electrical integrity to withstand the required seismic conditions.

  • PDF

Electrical Breakdown Characteristics of N2 Gas under Impulse Voltages (임펄스전압에 대한 N2가스의 절연파괴특성)

  • Shin, Hee-Kyoung;Kim, Dong-Kyu;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.131-136
    • /
    • 2011
  • This paper aims to examine the possibility of using an environmentally friendly $N_2$ as an alternative gas to $SF_6$. For this purpose, we have investigated breakdown characteristics of $N_2$ under impulse voltages in a quasi-uniform electric field gap. The 1.2/50[${\mu}s$] lightning impulse voltage, switching impulse voltages and oscillatory impulse voltages were applied at the test gap. The electric field utilization factor ranges from 0.5 to 0.8. The experimental data of $SF_6$ and $N_2$ acquired in the same experimental condition are presented in parallel for comparison. As a result, the breakdown voltages in $SF_6$ and $N_2$ are linearly increased with the gas pressure, also the breakdown voltages in $N_2$ are increased with increasing the gap distance and electric field utilization factor. The positive breakdown voltages are higher than the negative breakdown voltages. The nagative basic lightning impulse withstand level of 150[kV] in $N_2$ of about 0.5[MPa] is nearly equal to that in $SF_6$ of 0.15[MPa]. It is seen from the results obtained in this work that $N_2$ can be used as an eco-friendly alternative gas to $SF_6$ in distribution power equipment.

Thermal Lifetime Estimation of Coil Used for Dry-type Transformer (건식변압기 코일의 열적 수명평가)

  • Kim, M.K.;Huh, D.H.;Kim, I.S.;Jang, J.Y.;Moon, B.C.;Go, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.131-132
    • /
    • 2008
  • This paper describes a method to estimate the thermal lifetime of coil used in the dry-type molded transformer which is widely used in the domestic distribution system. In order to reduce the testing time, temperature accelerated aging test is planned. Finally, the thermal lifetime estimation method is composed of a temperature aging test and a cyclic test of temperature, humidly and lightning impulse voltage withstand test.

  • PDF

A study on the air clearance in the metal-enclosed switchgear (폐쇄배전반내 모선의 절연이격거리)

  • Son, Jae-Hyun;Kim, Sun-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1917-1919
    • /
    • 1996
  • This paper aims to extract the air clearance in 22.9KV the metal enclosed switchgear. First, we investigated the actual conditions on the clearance in the metal enclosed switchgear which has been used in domestic. The test model and 9 test electrodes for the air insulation strength tests have been designed and manufactured based on the investigation results. To find optimal clearance in the metal enclosed switchgear, we performed 50% flash-over test by the up and down method and lightning impulse withstand voltage test. And we obtained results that the clearance or phase-to-phase is 230 [mm] and clearance or phase-to-earth is 210[mm].

  • PDF

Fabrication and Performance Evaluation of Zinc Oxide Varistors for the Arresters used for Station System (발변전소 피뢰기용 산화아연소자의 제작 및 성능평가)

  • Cho, Han-Goo;Han, Se-Won;Kim, Suk-Soo;Yoon, Han-Soo;Lee, Un-Yong;O, Cheol-Gyu;Yu, Kun-Yang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.636-639
    • /
    • 2004
  • This paper presents the fabrication and performance evaluation of zinc oxide varistors for the arresters used for station system. ZnO varistors were fabricated with typical ceramic production methods and the structural and electrical characteristics were investigated. All varistors exhibited high density, which were in the range of $5.41{\sim}5.49g/cm^3$. In the electrical properties the reference voltage increased in the range of $4.410{\sim}5.250kV$ with increasing their thickness and the residual voltage exhibited the same trends as the reference voltage. In the long duration current impulse withstand test, E-2 and F-1 samples failed in the two and four shots, respectively, but E-1 and F-2 samples survived 18 shots during the test. Before and after this test, the variation ratio of residual voltage of E-1 and F-2 samples were -0.34% and 0.05%, respectively, which were in the acceptance range of 5%. According to the results of tests, it is thought that if the fabrication process such as insulating coating, sintering condition, and soldering method is improved, these ZnO varistors would be possible to apply to the station class arresters in the new future.

  • PDF

Tracking Performance Test of Polymer Insulator with Salt Solution which is added Surface Active Agent (계면활성제가 첨가된 염수용액에 따른 폴리머 애자의 트래킹 성능 평가)

  • Cho, Han-Goo;Lee, Un-Yong;Han, Dong-Hee;Kang, Sung-Hwa;Choi, In-Hyuk;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.62-67
    • /
    • 2005
  • Recently, polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. Aging test to estimate life property of polymer insulator is executed through several international standard such as IEC 61109 and CEA tracking wheel test, but is not getting clear conclusion yet. There are two methods in the diagnosis method of polymer insulator such as off-line and on-line. The diagnosis methods in off-line are external condition analysis by the eye, contaminant analysis on surface, surface analysis, pollution withstand voltage test, power frequency flashover voltage test, lightning impulse flashover test, tensile fracture load test and flexural load test. Polymer material is also investigated it's tracking resistance by adding surface active agent in IEC 587. In this paper, the tracking performance of polymer insulator with salt solution which is added surface active agent. The diagnosis of insulator sample has been analyzed by leakage current and visual examination, STRI guide and thermal image camera.

A study on the application of testing termination for XLPE Power Cable by Resistivity Grading Method Using Semi-conductive material (반도전 재료를 이용한 Resistivity grading 방식의 XLPE절연 전력케이블용 시험단말에 관한 연구)

  • Lee, C.Y.;Shin, D.S.;Dudkin, Sergey M.;Kim, D.W.;Park, W.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1105-1107
    • /
    • 1999
  • The purpose of termination for high voltage tests of XLPE power cable is to prevent flashover during the breakdown test of specimen as well as to withstand the specified voltage between its conductor and screen without failure. For easier treatment and simpler construction of testing termination, resistivity grading method using semi-conductive material was employed. Based on the fundamental theory, its failure characteristics by changing the resistivity of semi-conductive material on the insulation surface was investigated. With two layers construction by difference resistivity on their surfaces, much improved result than that of one resistivity was obtained through the experiment for MV cable.

  • PDF