• Title/Summary/Keyword: Withstand Test

Search Result 217, Processing Time 0.03 seconds

The Performance Analysis to Identify the Reuse and Assembly Impact of Temporary Equipment

  • Bae, Sung-Jae;Park, Jun-Beom;Kim, Jung-Yeol;Kim, Young-Suk;Kim, Jun-Sang;Jo, Jae-Hun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1252-1252
    • /
    • 2022
  • Temporary work that utilizes temporary equipment (e.g., system scaffold and system pipe support) in construction work is one of the most vulnerable work from a safety perspective in South Korea. Typically, temporary equipment is reused at construction sites. The Korea Occupational Safety and Health Agency announced guidelines regarding the performance standards for reusable temporary equipment to prevent the accidental collapse of temporary facilities. Nevertheless, temporary facilities' collapse still occurs, which could be attributed to a degradation in the performance due to the reuse of temporary equipment. Therefore, this study investigated the performance of simple temporary structures assembled with new and reused equipment. To this end, an experimental module was designed based on previous research cases, and two experimental models were constructed, in which one was assembled using new equipment (Model A), and the other was built using reused equipment (Model B). To determine the performance of each model, a load test was conducted to measure the maximum load that each model could withstand. The experimental results revealed that the maximum load of Model B was 15% lower than that of Model A. This indicates that there is a meaningful performance difference between those two models. Based on this result, the authors decided to perform additional tests with more realistic models than previous ones. The new experimental module was designed to ensure compliance with the Korean design guidelines. In this presentation, the authors show details of the first tests and their results and plan for the additional test.

  • PDF

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.

A Study on the Bending Strength of a Built-up Beam Fabricated by the $CO_2$ Arc Spot Welding Method ($CO_2$아크 스폿 용접법에 의한 조립보의 굽힘강도에 관한 연구)

  • 한명수;한종만;이준열
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.143-153
    • /
    • 1997
  • In this study, bending test was performed on the real-scale, built-up beam test model fabricated by the $CO_2$ arc spot welding to evaluate the applicability of the welding method to the production of the stiffened plate in car-carrying ship. The built-up beam models which were fixed at both ends in longitudinal direction or simply supported to the rigid foundation, depending on the restraint condition of the corresponding car decks considered, were subjected to simulated design vehicle loads or concentrated point loads. During the test, the central deflection and the longitudinal bending stresses were measured from several points on the longitudinal flange face to predict the section properties of the built-up beams. The longitudinal bending stress on each spot weld were also measured to calculate the average horizontal shear force subjected to spot welds. Test results revealed that the shear strength of spot welds with their current weld nugget size and welding pitch was adequate enough to withstand the horizontal shear forces under the design vehicle loads. Although the built-up beam fabricated by the arc spot welding was a discontinuous beam, its mechanical behavior was well explained by the continuous beam theory using the effective breadth of plate. Based on test results, the criterion for the size of spot weld of which the average shear stress might meet the allowable stress requirement of AWS Code could be established.

  • PDF

An Experimental Study on Fire-Resistant Boom (내화용 오일붐의 내화성에 대한 실험적 연구)

  • Yu J.S.;Sung H.G.;Oh J.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.2
    • /
    • pp.25-32
    • /
    • 2000
  • Fire-resistant boom is one of the most important facilities in in situ homing of spilled oil. Thermal response of a fire-resistant boom to turning is experimentally investigated in this paper by using an electric furnace and a burning test facility. This test facility is composed of a test tank, a fire boom, a hood for inhaling smoke, an incinerator for burning up gases and thermocouples, etc. Thereby a systematic method of approach in small laboratory scale is developed to study the performance of a fire-resistant boom. Burning test is carried out for the fire boom model which has been developed through the present study. It is shown that the present fire boom model has capability to withstand the high temperature around 800℃ and high rate of heat flux on it due to homing. For more realistic experimental environments, larger dimensions in devices and longer time in experiments are recommended in near future.

  • PDF

A Study on the Seismic Response of a Non-earthquake Resistant RC Frame Using Inelastic Dynamic Analyses (비선형 동적 해석을 이용한 비내진 상세 RC 골조의 지진거동 특성 분석)

  • Jeong, Seong-Hoon;Lee, Kwang-Ho;Lee, Soo-Kueon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • In this study, characteristics of the seismic response of the non-earthquake resistant reinforced concrete (RC) frame were identified. The test building is designed to withstand only gravity loads and not in compliance with modern seismic codes. Smooth bars were utilized for the reinforcement. Members are provided with minimal amount of stirrups to withstand low levels of shear forces and the core concrete is virtually not confined. Columns are slender and more flexible than beams, and beam-column connections were built without stirrups. Through the modeling of an example RC frame, the feasibility of the fiber elementbased 3D nonlinear analysis method was investigated. Since the torsion is governed by the fundamental mode shape of the structure under dynamic loading, pushover analysis cannot predict torsional response accurately. Hence, dynamic response history analysis is a more appropriate analysis method to estimate the response of an asymmetric building. The latter method was shown to be accurate in representing global responses by the comparison of the analytical and experimental results. Analytical models without rigid links provided a good estimation of reduced stiffness and strength of the test structure due to bond-slip, by forming plastic hinges closer to the column ends. However, the absence of a proper model to represent the bond-slip poased the limitations on the current inelastic analysis schemes for the seismic analysis of buildings especially for those with round steel reinforcements. Thus, development of the appropriate bond-slip model is in need to achieve more accurate analysis.

A study on the temperature drop rate for a military product test & evaluation in the mountains (군수품 환경시험을 위한 남한 산악 지역 고도에 따른 온도강하율 산출 연구)

  • Kim, Youngrae;Yun, Jae-Hyeong;Na, Jae-Hyun;Kim, Jang-Eun;Kim, Si-Ok;Kim, DongGil;Hong, YeonWoong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1145-1152
    • /
    • 2017
  • Environmental tests are used to verify an equipment that can withstand the rigors of harsh environments. In general, military products have lots of experiences with extreme environment compared to commercial products. Therefore, the military products used in mountains require a tailoring process about temperature drop for the environmental test. The International Organization for Standardization publishes that the coefficient of temperature drop is $-6.5^{\circ}C/1000m$ from all around the world. However, there is no the criteria in the South Korea. In this paper, we calculate the coefficient of temperature drop. Also, an equation used as a tailoring process for a low temperature test of the products has been suggested.

Heating Experiment of Fireproof Board using the Dry Process Bottom Ash and Oyster Shell (굴 패각과 건식공정 바텀애시를 사용한 내화보드의 가열실험)

  • Jung, Ui-In;Kim, Bong-Joo;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.193-199
    • /
    • 2016
  • This study is a research about performance of fireproof board using industrial waste such as oyster shell and dry process bottom ash through the heating test and conclusions were obtained as follows. Test samples show back side temperatures as follows : in $300^{\circ}C$, $103.1{\sim}125.1^{\circ}C$, in $600^{\circ}C$, $201.1{\sim}210.1^{\circ}C$, in $900^{\circ}C$, $249.2{\sim}276.9^{\circ}C$. In the test, temperature increases of specimens of fireproof board are kept at certain temperatures hence it could be concluded that the specimens withstand high temperatures. According to the test, it could be concluded that fireproof board made by smaller particles shows better performance up to $600^{\circ}C$ while at higher temperatures, fireproof board made by bigger particles shows better performance. It is estimated that fireproof board made by particles of bigger size has more pore structure and it delays heat conduction.

Launch environmental test results of KAISTSAT-4 QM (과학위성 1호 인증모델에 대한 발사환경시험 결과)

  • Tahk, Kyung-Mo;Lee, Jun-Ho;Lee, Sang-Hyun;Kim, Eugene-D.;Cha, Won-Ho;Youn, Sung-Kie
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.124-129
    • /
    • 2002
  • KAISTAT-4 is the fourth experimental microsatellite of KITSAT series which has been developed by Satellite Technology Research Center of KAIST for the last two years. The launch of KAISTSAT-4 is scheduled in 2003. The primary experimental payloads consist of Far-ultraviolet Imaging Spectrograph and Space Physis Package. In a similar way to KITSAT series, the interior of KAISTSAT-4 comprises mainly a set of stacked aluminium-alloy module boxes, each being capable of acting as the primary load path in the mechanical structure. The KAISTSAT-4 qualification model is now designed, fabricated, integrated, and tested to verify if the electrical and mechanical components work and can withstand the launch environments. All the required structural tests have been performed to a sufficient degree to satisfy the intent of the test requirements. This paper presents the structural system and launch environmental test results of KAISTSAT-4 qualification model.

Design of Instrumented Pod for Flight Aeroacoustic Environment (비행 공력음향 환경 측정을 위한 계측포드 설계)

  • Jun, Oo-Chul;Kim, Sang-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.536-541
    • /
    • 2012
  • An instrumented pod has been developed to measure the aeroacoustic environment as well as the conventional data such as load, vibration, and aerodynamic heating of fighters during flight tests, confirming to the recently developed external pod design for fighters. This study presents the development of the measurement system in detail, being the first indigenous effort in its kind. The pod was designed to meet the requirements of the MIL-HDBK-1763 and MIL-STD-810 Method 515, which are the base to determine the locations and range of sensors. The Endevco 8510B-2 was selected as the sensor to withstand the harsh environment during the flight tests. In order to assess the integrity of the fabricated pod design, a ground run-up test of a KF-16 has been conducted with the pod installed at Station 5. The test results show that the system works well but the sound level exceeds the predetermined sensor range. The sensor range has been readjusted for flight test performed later.

Development of a Screw-Crane System for Pre-Lifting the Sternal Depression in Pectus Excavatum Repair: A Test of Mechanical Properties for the Feasibility of a New Concept

  • Park, Hyung Joo;Rim, Gongmin
    • Journal of Chest Surgery
    • /
    • v.54 no.3
    • /
    • pp.186-190
    • /
    • 2021
  • Background: Pre-lifting of the sternum marked a major turning point in pectus excavatum repair. The author developed the crane technique in 2002 and successfully applied it to more than 2,000 cases using sternal wire stitching. However, blind sternal suturing limited the use of the wire-stitch crane. We propose a novel screw for sternal lifting as a new tool for the crane technique. Methods: We developed a screw system strong enough to withstand the pressure needed for sternum lifting. The screw was designed to have a broader thread to hold the bony tissue securely. The screw's sustaining power was tested using the torsion, driving torque, and axial pull-out tests in a polyurethane block and ex-vivo porcine sternum. Results: The screws were easily driven into the sternum, and the head of the screw was connectable to the table-mounted retractor. In the torsion test, the 2° offset torsional yield was 4.53 N·m (reference value, 1 N·m). In the polyurethane block driving torque test, the maximum torque was 0.98 N·m (reference value, 0.70 N·m). The axial pull-out test was 446 N (reference value, 100 N). The maximum pull-out resistance in the ex-vivo porcine sternum model was 1,516 N. Conclusion: The screw crane was strong enough to sustain the chest wall weight to be lifted. Thus, the screws could effectively replace the sternal wire stitching in crane pre-lifting of the sternum. We expect that application of the screw-crane will be easy and that it will improve the safety and success rate of pectus repair surgery.