• Title/Summary/Keyword: Wireless tram

Search Result 14, Processing Time 0.03 seconds

Power Distribution Strategy for Wireless Tram with Hybrid Energy Storage System (하이브리드 에너지 저장장치를 탑재한 무가선 트램의 전력분배전략)

  • Kang, Kyung-Jin;Oh, Yong-Kuk;Lee, Jee-Ho;Yeom, Min-Kyu;Kwak, Jae-Ho;Lee, Hyeong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1615-1621
    • /
    • 2014
  • A wireless tram which runs without catenary and instead uses batteries installed in the tram has been recently researched actively. This paper presents a new method maximizing absorption of regenerative energy of a wireless tram and extending life cycle of the energy storage device in the wireless tram by applying line-optimized charging and discharging scenario. Energy efficiency and life cycle of energy storage system (ESS) are highly dependent on the characteristic of operating conditions. For example, frequent charge and discharge with high power cause the problems that decrease the battery life cycles. Hybrid energy storage system (HESS) is combination of two ESSs which have complementary characteristics to each other. HESS can provide even better functionality and performance than the battery only ESS due to the synergy effect of two ESSs. This paper also provides a power distribution strategy and driving scenarios which increase the life cycle and energy efficiency of the HESS consisting of a battery and an ultra-capacitor. The developed strategy was tested and verified by a hardware-in-the-loop-simulation (HILS) system which emulates the a wireless tram.

The SOC Management Strategy of Battery System for Propulsion in Wireless Low Floor System (무가선 저상트램 추진배터리 시스템의 SOC관리 전략)

  • Oh, Yong-Kuk;Kwak, Jae-Ho;Lee, Ho-Yong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2329-2335
    • /
    • 2011
  • The Wireless low floor tram uses the energy more effectively than other systems with onboard battery system. But for this the SOC(state of charge) management of the battery system is required. This paper is focused on the SOC management strategy of battery system for propulsion in wireless low floor tram. For minimizing consumption energy, the SOC management strategy that maximizes the regeneration energy is studied. The SOC operating region is divided to overcome the limited life cycle pointed out as a disadvantage of battery system. And the effective energy management strategy of tram is suggested through the charge/discharge of the battery system according to tram status in catenary/catenary-free section.

  • PDF

A Study on the Development of Tram Operational Safety System (트램 도입을 위한 안전체계 구축에 관한 연구)

  • Park, Min-Kyu
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.43-48
    • /
    • 2017
  • The first tram in korea was commended the operation from 1899 to 1968 as a core role of public transportation. However, tram recently is being recognized as an alternative against a traffic congestion, a super-aged society and an environmental pollution problem. Because of these advantages, we are trying to introduce tram in korea. The efforts to introduce trams have focused on the economic analysis for tram construction. But we must be interested in tram operational safety. Early opening tram accidents could affect a negative impact on the additional tram introduction. We are trying to introduce trams in Daejeon, Wi-Rye and Su-won. In this paper, I want to check the safety issues in tram operation phase.

Wireless Network Safety Management System on LPWA-based Tram Roads (LPWA 기반 트램 노면의 무선통신망 안전관리 시스템)

  • Jung, Ji-Sung;Lee, Jae-Ki;Park, Jong-Kweon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.57-68
    • /
    • 2018
  • A system to prevent disasters by collecting and analyzing environmental information such as road surface sedimentation, sinkholes, collapse risk of bridges, temperature and humidity around tram station is continuously monitored by monitoring the condition of road surface when constructing tram which is one of the urban railways. In this paper, we propose a wireless network security management system for tram roads based on LPWA that can recognize risk factors of road surface, bridge and tram station of tram in advance and prevent risk. The proposed system consists of a sensor node that detects the state of the tram road surface, a gateway that collects sensor information, and a safety management system that monitors the safety and environmental conditions of the tram road surface, and applies the low power long distance communication technology. As a result of comparing the proposed system with the LTE system in the field test, it was confirmed that there is no significant difference between the sensor information value and the critical alarm level in the monitoring system.

Design and Requirement Analysis for Vehicle operating computer of Bimodal Tram (바이모달트램용 차량운영컴퓨터의 요구사항 분석 및 설계)

  • Lee, Kang-Won;Yoon, Hee-Taek;Kim, Gun-Kuk;Hwang, Wi-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1930-1935
    • /
    • 2008
  • Bimodal tram is able to run both general and special road. It has also the advantages of both public bus and subway which have the charateristics of easiness to approach and punctuality respectively. These advantages are accomplished by the cooperative communication between the control center and bimodal tram which is running with the fleet. This paper have investigated the requirement analysis and designing of the car operating computer system which have the functions of communication, broadcasting and display. car operating computer system communicates between bimodal tram and control center with wireless antenna. It can also transmit the location and status information of bimodal tram to control center for managing the bimodal tram fleet on road efficiently and economically.

  • PDF

Restoring Torque Control Strategy of IPMSM for the Independently Rotating Wheelsets in Wireless Trams

  • Oh, Ye Jun;Cho, Yonho;Kim, In-Gun;Lee, Ju;Lee, Hyungwoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1683-1689
    • /
    • 2017
  • Wheelsets are an important component affecting the dynamic characteristics of railway vehicles. Research on wheelsets has been conducted for a long time. It is possible to generate the restoring force by the individual torque control of the left and right wheels in the independently rotating wheelsets (IRWs). Although this method solves the problems of conventional wheelsets, such as the solid axle wheelsets, the restoring force control must be added to the existing traction force control, and the restoring force requires a higher precision and quicker response than the traction force. In this paper, we study the robust control strategy of wireless trams with independently rotating wheelsets. The interior permanent magnet synchronous motor (IPMSM) and the controller with the actual scale wireless tram are designed to verify the torque control performance. Moreover, we propose an open loop control method to test and verify the traction and restoring force control algorithm of the IRWs.

A Study on the Test Construction Evaluation and Noise and Vibration Characteristics of Wireless Low-Floored Trams Trackway (무가선 저상트램 노면선로의 시험시공 평가와 소음·진동 특성연구)

  • Jeong, Young Do;An, Dong Geun;Jun, Jin Taek;Jeong, Woo Tae;Lee, Su Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.143-154
    • /
    • 2012
  • The wireless low-floored tram is an innovative transportation system which is environment-friendly and highly energy-efficient. In addition, the system has various advantages such as low construction cost, improvement of urban landscape, revitalization of surrounding commercial area, elevated convenience for passengers, etc. Therefore, more than ten local governments have proposed tram construction projects in Korea. Accordingly, many research and development projects are ongoing funded by government including the developments of tram vehicle, tram trackway, signal system, etc. The embedded rail system are commonly used in order to provide leveled roadway surface in urban area. It is effective to reduce the noise and vibration, caused at the interface between the wheel and track, to minimize the construction period, and to lower the maintenance cost. This paper investigated the design and construction processes for tram trackway and figured out the constructability for the test track with embedded rail system for the first time in Korea. The performance to reduce the noise and vibration were quantitatively measured in the test track with embedded rail system. In addition, the results were compared to the ones for track with conventional rail system.

Development of Local Ground Pantograph for Power Supply to Wireless Mountain Trams (무가선 산악트램 급전을 위한 지상 집중식 급전장치 개발)

  • Seo, Sung-il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.268-275
    • /
    • 2020
  • In domestic mountain resort areas, a catenary system cannot be installed for the protection of the natural environment and view. Therefore, mountain trams must be operated wireless. In this study, a local ground pantograph, which supplies electricity to the battery on board, was developed for this purpose, and its performance was verified by tests. The system is installed on ground at stops or repair shops. While a bogie goes to the pantograph, the arms and collection shoes are raised by a spring force to make contact with the collection bar under the bogie so electric power can be supplied to the battery. Because it is a local ground type, it does not require a roof pantograph and catenary system. The system enables the mountain tram to run wireless. In addition, there is no separation and arc because it collects current while standing at stops or shops. The system has a long life because moving contact, which generates wear and damage to shoes, is avoided. The insulation resistance was above the criteria of 10 ㏁, and there was no abnormal temperature increase when a current of 335A was supplied for one hour.

Development of Carbon Nanomaterials-based High-Energy-Density Hybrid Capacitors for a Mini-Tram Vehicle (미니트램 차량을 위한 탄소 나노소재 기반 하이브리드 커패시터 개발)

  • Kang, Seok-Won;Han, Su-Hyun;Jeong, Rag-Gyo;Park, Ji-Hyun;Jun, Seong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1038-1039
    • /
    • 2015
  • 미니트램(Mini-Tram)의 에너지 공급시스템은 유도급전(IPT: Inductive Power Transfer) 기반의 무선급속충전(Wireless High Speed Charging) 및 슈퍼커패시터(Supercapacitor) 기술을 융합하여 구성되었다. 기존의 전기이중층 커패시터(EDLC) 및 하이브리드 커패시터(LIC)는 급속충전을 위한 출력성능은 충족하지만, 낮은 에너지밀도 때문에 미니트램의 활용성을 제한하고 있다. 이에 수송시스템 분야에서의 커패시터의 경쟁력을 향상하기 위해서는 최소한의 공간 및 무게 조건을 충족함과 동시에 에너지 밀도를 극대화할 수 있는 하이브리드 커패시터의 개발이 요구된다. 본 논문에서는 개발 중인 미니트램의 에너지 요구량을 산정하여 매체의 개발목표 사양을 도출하고 이를 실현하기 위한 방안에 대해서 논하고자 한다.

  • PDF