• Title/Summary/Keyword: Wireless power Transfer

Search Result 513, Processing Time 0.063 seconds

semi-random 자장을 사용하는 적합한 무선전력전송 시스템 (Wireless Power Transfer System using Semi-random Magnetic Field)

  • Lim, Dong-Nam;Lee, Dong-Su;Jeon, Seong-Jeub
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.480-481
    • /
    • 2014
  • In this paper, a feeder system for wireless power transfer is investigated, which generates semi-random magnetic field using three currents with different frequencies. A semi-random field is very useful to magnetizing a pickup irrespective of its posture.

  • PDF

무가선 전동차용 울트라커패시터 모듈 충·방전을 위한 DC-DC 컨버터 설계 (Design of DC-DC Converter to Charge and Discharge Ultra-Capacitor Modules for Wireless Trains)

  • 조정민;한영재;김재원;이장무;김길동
    • 전기학회논문지
    • /
    • 제64권12호
    • /
    • pp.1776-1781
    • /
    • 2015
  • Electric power trains receive electric power from overhead cables via a pantograph system. Power collector system in trains increase the cross section of tunnel and require a massive coreless filter reactor in propulsion inverter because of the power disturbance by contact loss phenomenon of a train. In this paper we proposed a wireless train which can run to next station with charging energy of ultra-capacitor module block. We designed DC-DC converter to charge and discharge ultra-capacitor modules by using Next Train running test results and confirm the feasibility of the proposed system through simulation.

근거리에서 효율 향상을 위해 적응 주파수 제어 회로를 갖는 HF-대역 무선 전력 전송 시스템 (HF-Band Wireless Power Transfer System with Adaptive Frequency Control Circuit for Efficiency Enhancement in a Short Range)

  • 장병준;원도현
    • 한국전자파학회논문지
    • /
    • 제22권11호
    • /
    • pp.1047-1053
    • /
    • 2011
  • 본 논문에서는 근거리에서 효율 향상을 위해 적응 주파수 제어 회로를 갖는 HF-대역 무선 전력 전송 시스템을 제안하였다. 일반적으로 무선 전력 전송 시스템은 공진기 간의 이격 거리가 가까워짐에 따라 결합 계수가 변하게 되며, 이는 반사 임피던스에 의한 임피던스 부정합을 발생시킨다. 본 연구에서 제안한 방식은 전압제어 발진기의 공진 주파수를 이격 거리에 따라 자동으로 가변함으로써 공진기 간의 거리가 가까워 임피던스 부정합이 큰 경우에도 전송 효율의 저하를 막을 수 있다. 적응 주파수 제어 회로는 방향성 결합기, 검파기 및 루프 필터로 구성된다. 본 논문에서 제안한 방법의 유용성을 입증하기 위하여 HF-대역에서 동작하는 30${\times}$30 $cm^2$ 크기의 루프 안테나를 갖는 무선 전력 전송 시스템을 설계하여 측정한 결과 근거리에서 효율이 개선됨을 확인하였다.

A Frequency-Tracking Method Based on a SOGI-PLL for Wireless Power Transfer Systems to Assure Operation in the Resonant State

  • Tan, Ping-an;He, Haibing;Gao, Xieping
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1056-1066
    • /
    • 2016
  • Wireless power transfer (WPT) technology is now recognized as an efficient means of transferring power without physical contact. However, frequency detuning will greatly reduce the transmission power and efficiency of a WPT system. To overcome the difficulties associated with the traditional frequency-tracking methods, this paper proposes a Direct Phase Control (DPC) approach, based on the Second-Order Generalized Integrator Phase-Locked Loop (SOGI-PLL), to provide accurate frequency-tracking for WPT systems. The DPC determines the phase difference between the output voltage and current of the inverter in WPT systems, and the SOGI-PLL provides the phase of the resonant current for dynamically adjusting the output voltage frequency of the inverter. Further, the stability of this control method is analyzed using the linear system theory. The performance of the proposed frequency-tracking method is investigated under various operating conditions. Simulation and experimental results convincingly demonstrate that the proposed technique will track the quasi-resonant frequency automatically, and that the ZVS operation can be achieved.

Three-coil Magnetically Coupled Resonant Wireless Power Transfer System with Adjustable-position Intermediate Coil for Stable Transmission Characteristics

  • Chen, Xuling;Chen, Lu;Ye, Weiwei;Zhang, Weipeng
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.211-219
    • /
    • 2019
  • In magnetically coupled resonant (MCR) wireless power transfer (WPT) systems, the introduction of additional intermediate coils is an effective means of improving transmission characteristics, including output power and transmission efficiency, when the transmission distance is increased. However, the position of intermediate coils in practice influences system performance significantly. In this research, a three-coil MCR WPT system is adopted as an exemplification for determining how the spatial position of coils affects transmission characteristics. With use of the fundamental harmonic analysis method, an equivalent circuit model of the system is built to reveal the relationship between the output power, the transmission efficiency, and the spatial scales, including the axial, lateral, and angular misalignments of the intermediate and receiving coils. Three cases of transmission characteristics versus different spatial scales are evaluated. Results indicate that the system can achieve relatively stable transmission characteristics with deliberate adjustments in the position of the intermediate and receiving coils. A prototype of the three-coil MCR WPT system is built and analyzed, and the experimental results are consistent with those of the theoretical analysis.

직렬-병렬 공진 무선전력전송 시스템의 동기 좌표계 모델 (DQ Synchronous Reference Frame Model of a Series-Parallel Tuned Inductive Power Transfer System)

  • 노은총;이상민;이승환
    • 전력전자학회논문지
    • /
    • 제25권6호
    • /
    • pp.477-483
    • /
    • 2020
  • This study proposes a DQ synchronous reference frame model of a series-parallel tuned inductive power transfer (SP-IPT) system. The wireless power transmission system experiences control difficulty because the transmitter-side controller cannot directly measure the receiver-side load voltages and currents. Therefore, a control-oriented circuit model that shows the dynamics of the IPT system is required to achieve a well-behaved controller. In this study, an equivalent circuit model of the SP-IPT system in a synchronously rotating reference frame is proposed using the single-phase DQ transformation technique. The proposed circuit model is helpful in modeling the dynamics of the voltages and currents of the transmitter- and receiver-side resonant tanks and loads. The proposed circuit model is evaluated using frequency- and time-domain simulation results.

Analysis and Optimization of Wireless Power Transfer Efficiency Considering the Tilt Angle of a Coil

  • Huang, Wei;Ku, Hyunchul
    • Journal of electromagnetic engineering and science
    • /
    • 제18권1호
    • /
    • pp.13-19
    • /
    • 2018
  • Wireless power transfer (WPT) based on magnetic resonant coupling is a promising technology in many industrial applications. Efficiency of the WPT system usually depends on the tilt angle of the transmitter or the receiver coil. This work analyzes the effect of the tilt angle on the efficiency of the WPT system with horizontal misalignment. The mutual inductance between two coils located at arbitrary positions with tilt angles is calculated using a numerical analysis based on the Neumann formula. The efficiency of the WPT system with a tilted coil is extracted using an equivalent circuit model with extracted mutual inductance. By analyzing the results, we propose an optimal tilt angle to maximize the efficiency of the WPT system. The best angle to maximize the efficiency depends on the radii of the two coils and their relative position. The calculated efficiencies versus the tilt angle for various WPT cases, which change the radius of RX ($r_2=0.075m$, 0.1 m, 0.15 m) and the horizontal distance (y=0 m, 0.05 m, 0.1 m), are compared with the experimental results. The analytically extracted efficiencies and the extracted optimal tilt angles agree well with those of the experimental results.

근거리 무선전력전송용 공진형 Class ${\phi}_2$ 인버터 동작 특성 (The characteristics of Resonant class ${\phi}_2$ Inverter for short range wireless power transmission)

  • 양해열;박재현;김창선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.13-14
    • /
    • 2011
  • The power conversion converter for driving the wireless power transfer system is can be into the two part of the DC power conversion rectifier and the high frequency dc-ac power conversion inverter. In this paper, The operating characteristics of the Class-${\Phi}_2$ resonant inverter have been investigated through by simulation and by experiment. It can be switched at a high frequency without the switching losses and the harmonics are reduced effectively due to the input LC filter. Its switching frequency is 1MHz and the input voltage is 96V which is the output voltage of LLC resonant converter. And its output peak voltage is 170V. The resonant inverter module operated at the commercial power source of 220V was built. And also the electromagnetic coupled resonance coils were designed for wireless power transfer with a 1MHz operating frequency. As a experimental result, the wireless power transmission was confirmed and it is varified the validity of the experiment.

  • PDF

전기자동차용 고효율 무선 온보드 충전기의 설계 (Design of the High Efficiency Wireless On-Board Charger for Electric Vehicles)

  • 트란덕홍;부반빈;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 추계학술대회 논문집
    • /
    • pp.27-28
    • /
    • 2015
  • In this paper a high efficiency wireless on-board charger for Electric Vehicle (EV) is proposed and the theoretical analysis based on the two-port network model to come up with suitable design for the battery charge application is presented. The proposed Wireless Power Transfer (WPT) method has adopted four-coil system with air core and its superior performance is proved by comparing it to the conventional two-coil system by the mathematical analysis. In addition, since the proposed WPT converter is able to operate at an almost constant frequency regardless of the load, CC/CV charge of the battery can be simply implemented. A 6.6kW prototype is implemented with 20cm air gap to prove the validity of the proposed method. The experimental results show that the dc to dc conversion efficiency of the proposed system achieves 97.08% at 3.7 kW.

  • PDF

Evaluation of AC Resistance in Litz Wire Planar Spiral Coils for Wireless Power Transfer

  • Wang, Xiaona;Sun, Pan;Deng, Qijun;Wang, Wengbin
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1268-1277
    • /
    • 2018
  • A relatively high operating frequency is required for efficient wireless power transfer (WPT). However, the alternating current (AC) resistance of coils increases sharply with operating frequency, which possibly degrades overall efficiency. Hence, the evaluation of coil AC resistance is critical in selecting operating frequency to achieve good efficiency. For a Litz wire coil, AC resistance is attributed to the magnetic field, which leads to the skin effect, the proximity effect, and the corresponding conductive resistance and inductive resistance in the coil. A numerical calculation method based on the Biot-Savart law is proposed to calculate magnetic field strength over strands in Litz wire planar spiral coils to evaluate their AC resistance. An optimized frequency can be found to achieve the maximum efficiency of a WPT system based on the predicted resistance. Sample coils are manufactured to verify the resistance analysis method. A prototype WPT system is set up to conduct the experiments. The experiments show that the proposed method can accurately predict the AC resistance of Litz wire planar spiral coils and the optimized operating frequency for maximum efficiency.