• Title/Summary/Keyword: Wireless power

Search Result 3,246, Processing Time 0.036 seconds

Development of a wireless telemetry system based on MICS standard (MICS 표준에 기반한 무선 텔레메트리 시스템 개발)

  • Lee, Seung-Ha;Park, Il-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2009
  • It is said that the desirable bio-signal measurement and stimulation system should be an implantable type if the several problems such as biocompatibility, electrical safety, and so on are overcome. In addition to the biocompatibility issue, a robust RF communication and a stable electrical power source for the implantable bio-signal measurement and stimulation system are very important matters. In this paper, a wireless telemetry system which adopts the FCC's approved MICS (medical implant communication service) protocol and a wireless power transmission has been proposed. The proposed system composed of a base station (BS) and an implantable medical device (IMD) has the advantages that the interference with other RF devices can be reduced by the use of the specially assigned MICS frequency band of 402.MHz to 405 MHz. Also, the proposed system includes various functions of a multi-channel bio-signal acquisition and an electric stimulation. Since the electrical power for the IMD can be provided by the inductive link between PCB patterned coils, the IMD needs no battery so that the IMD can be smaller size and much less dangerous than the active type IMD which includes the internal battery. Finally, the validity as a wireless telemetry system has been demonstrated through the experiments by using the implemented BS and IMD.

Optimum Cell Design using MLP Model and Wave Propagation Characteristic Parameters for Wireless LAN in Indoor Radio Environments (실내 환경에서 다층 퍼셉트론 모델과 전파 전파 특성파라미터를 이용한 무선 근거리통신망의 최적 셀 설계)

  • 김광윤;문용규
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.5
    • /
    • pp.547-556
    • /
    • 2002
  • This paper was proposed a wave path loss prediction algorithm using multilayer perceptron (MLP) model and wave propagation characteristic parameters for Wireless LAN in indoor radio environments. Receiving power was predicted by calculating indoor path loss in a Wireless LAN that has transmission power of 100mW and frequency of 2.4GHz, and was compared with measured. In the result of measurement shows that there is a difference between predicted and measured receiving power which can be reduced by an accurate analysis of the various path loss factors. In order to fix the access point(AP) positions was used the proposed a wave path loss prediction algorithm, and designed the optimum cell for Wireless LAN.

  • PDF

Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜)

  • Yang, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.177-185
    • /
    • 2008
  • Research on media access control (MAC) scheme for Wireless Sensor Network (WSN) has been mainly focused on energy efficiency improvement, while interest on latency is relatively weak. However, end-to-end latency could be a critical limitation specifically in the multi-hop network such as wireless multimedia sensor networks. In this paper we propose a media access control scheme with distributed transmission power control to Improve end-to-end transmission latency as well as reduce power consumption in multi-hop wireless sensor networks. According to the simulation results, the proposed scheme is turned out to be an energy efficient scheme with improved end-to-end transmission latency.

Power of a Defer Timer for the design of broadcasting protocol in Wireless Sensor Networks

  • Kim, Bo-Nam;Lee, In-Sung;Yang, Jun-Mo;Lee, Jin-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.470-473
    • /
    • 2007
  • Wireless Sensor Networks (WSNs) have merged to become one of the most promising applications of wireless ad hoc networks. A defer timer has been used in some of existing network protocols to solve a set of problems in WSNs. We first investigate the use of a defer timer to fully take the advantage of it in WSNs. We demonstrate that by properly setting up the defer timers, many difficult issues in sensor networks, such as power limitation, the broadcast storm problem, and the construction of the virtual backbone, can be easily tackled with only the help of simple localized information at each node. In this paper, we present the power of a defer timer in the design of dominating set construction protocol for broadcasting. The ns 2 computer simulations are carried out for performance study.

  • PDF

Optimizing Method for Wireless Charging with Frequency Control (주파수 제어에 의한 무선 충전 최적화 기법)

  • Ahn, Tae-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.275-280
    • /
    • 2013
  • This paper presents an optimizing method for wireless charging system, specifically focused on the capsule endoscope applications. In order to increase the wireless power transfer efficiency of electro-magnetic resonance coupled coils, this paper investigates the impact factors of the power transfer efficiency in small battery capacity system and proposes a efficiency optimizing method based on frequency control. Simulation results show that the proposed efficiency optimal control method can effectively stabilize the wireless power transfer efficiency so as to successfully solve the main issue of transfer efficiency variation with distance and as well as parasitic element.

Efficiency Enhancement of a Wireless Power Transmission System Applying a Superconducting Coil (초전도 코일을 적용한 무선전력전송 시스템 효율 향상)

  • Kang, Min-Sang;Choi, Hyo-Sang;Jeong, In-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.353-356
    • /
    • 2015
  • Due to high oil prices, environmental pollution, the study of electric vehicles have been actively promoted. Charger for the electric vehicle is being developed using wireless rather than cable options. In this paper, we got more efficiency from using a superconducting transmission coil compared to using a normal coil. We implemented a wireless power transmission system using a magnetic induction at a frequency of 63.1 kHz. For comparison, a transmitter was designed using a superconducting coil and a normal coil. In addition, a receiver used a normal coil to apply for electric vehicles. The applied voltage and current were12 V and 5 A. Efficiency at a distance of 40 ~ 80 mm was measured. As a result, the superconducting transmission coil had a higher efficiency than the normal transmission coil. However, the receiving coil should be normal conductor for stable operation considering that it was put in moving electric vehicle. The efficiency was increased to 44 % at a distance of 40 mm when the diameter of normal receiving coil was 120 mm.

Task Scheduling Technique for Energy Efficiency in Wireless Sensor Networks (무선 센서 네트워크 환경에서의 에너지 효율성을 고려한 태스크 스케줄링 기법)

  • Lee Jin-Ho;Choi Hoon;Baek Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.884-891
    • /
    • 2006
  • A wireless sensor node is typically battery operated and energy constrained. Therefore it is critical to design efficient power management technique and scheduling technique. In this paper, we propose an OS-level power management technique for energy saving of wireless sensor node, it is called EA-SENTAS (Energy-Aware Sensor Node TAsk Scheduling). It can decrease the energy consumption of a wireless sensor node to use task scheduling technique that shut down components or use low power mode of each component when not needed. Simulation results show that EA-SENTAS saves energy up to 56 percent to compare with conventional duty cycle.

Dynamic Control of Timer for Receiving Beacon in Low Power Wireless Interface (저전력 무선접속에서 비콘 수신을 위한 타이머의 동적 제어)

  • Song, Myong-Lyol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1303-1310
    • /
    • 2007
  • In IEEE 802.11b wireless network, stations synchronize themselves to the beacons periodically sent by the access point (AP) when they are running in low power mode. Stations stay awake for enough time to receive beacon because it is delayed in AP if the wireless channel has been being used by other traffic at each scheduled instant. In this paper, we propose a method that measures the delay of received beacons and calculates wake-up interval of station to receive the next one. Beacon transmission delay at the AP is analyzed. The proposed method is simulated and its characteristics are described in the analysis. The result measured in terms of station's wake-up interval shows some enhancement in energy consumption.

Joint Transmission Slot Assignment, FSO Links Allocation and Power Control for Hybrid RF/FSO Wireless Mesh Networks

  • Zhao, Yan;Shi, Wenxiao;Shi, Hanyang;Liu, Wei;Wu, Pengxia
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.325-335
    • /
    • 2017
  • Hybrid radio frequency/free space optical (RF/FSO) wireless mesh networks have attracted increasing attention for they can overcome the limitations of RF and FSO communications and significantly increase the throughput of wireless mesh networks (WMNs). In this article, a resource assignment optimization scheme is proposed for hybrid RF/FSO wireless mesh networks. The optimization framework is proposed for the objective of maximizing throughput of overall hybrid networks through joint transmission slot assignment, FSO links allocation and power control with the consideration of the fading nature of RF and FSO links. The scheme is formulated as an instance of mixed integer linear program (MILP) and the optimal solutions are provided using CPLEX and Gurobi optimizers. How to choose the appropriate optimizer is discussed by comparing their performance. Numerous simulations are done to demonstrate that the performance of our optimization scheme is much better than the current case of having the same topology.

Analisys about the Earth Fault Characteristics in the Wireless Power Transmission System of the Electric Vehicle (무선충전 전기자동차 전력공급장치에서의 지락사고 특성 분석)

  • Jung, Jin-Soo;Han, Woon-Ki;Park, Chan-Um;Song, Young-Sang;Lim, Hyun-Sung;Cho, Min-Ho;Lyu, Ji-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.13-17
    • /
    • 2014
  • In this paper, the risk of electric shock is analyzed through analysis for characterization of potential distribution analysis and ground fault current analysis near the area where there are occurred a ground fault at electric vehicle wireless charging system using 20kHz. Studies for electric vehicle wireless charging system are in the works for development of efficiency increase, pickup shape design and communication module as a fundamental research step. But the research related to electrical safety and is still scarce state so that more studies are necessary to commercialize. As a result of analysis, it is verified that induced voltage is arisen more up to 45V near the a area of accident during ground fault and fault current has been maintained continuously without clearing fault condition by operating characteristics for circuit breaker and inverter.