• Title/Summary/Keyword: Wireless power

Search Result 3,253, Processing Time 0.033 seconds

A Study on Technology Standardization as Introduction of SDR Technology (SDR 도입에 따른 기술 표준화에 관한 연구)

  • 정성철;김규환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.132-135
    • /
    • 2002
  • In radio communication technology, SDR(Software Defined Radio) technology is emerging as a trendy technology for future. SDR is expected to change existing radio systems including central hardware. SDR is equipment that wireless parameters (frequency, modulation, additional service, power level, receive sensitivity, etc.) are controlled by software. In the world, equipments using the new technology are spreading. Not only equipments being imported but also local manufacturers are making this equipment, developing software and offering upgraded service. In the future, as SDR spreads and users choose the service, diverse equipments will be developed through competition and individual development. This diversity of equipment and services will introduce problems in compatibility and interoperation issues. So the government will have to make technical standard for SDR service and will have to make theses standards available to users and manufacturers alike. Therefore I am investigating the elements that can be used to establish these standards.

  • PDF

A Measurement Allocation for Reliable Data Gathering in Spatially Corrected Sensor Networks (공간상관 센서네트워크에서 신뢰성 있는 데이터 수집을 위한 측정의 분배)

  • Byun, Sang-Seon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.434-437
    • /
    • 2016
  • In this paper, we consider a measurement allocation problem for gathering reliable data from a spatially correlated sensor field. We allocate the probability of each sensor's being measured considering its marginal contribution in entire data gathering; higher measurement probability is given to a sensor that gives higher reilable data. First we establish a correlation model considering limit in each sensor's transmission power, noise in the process of measurement and transmission, and attenutations in wireless channel. Then we evaluate the reliability of gathered data by estimating distortion error in sink node. We model the measurement allocation problem in spatially correlated sensor field into a cooperative game, and quantifiy each sensor's marginal contribution using Shapley Value. Then, the probability of each sensor's being measured is given in proportion to the Shapley Value.

  • PDF

A Proposal on Cryptographic Synchronization for T4 Link Encryption (T4급 링크 암호에 적합한 암호 동기방식 제안)

  • Lee, HoonJae;Kim, KiHwan;Kang, YongJin;Lee, Sang-Gon;Ryu, Young-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.202-210
    • /
    • 2018
  • The modern battlefield is being developed as a network-centric warfare where priority is given to rapid status grasp and power deployment through scientification and modernization. Therefore, tactical data link has been continuously improving the network speed, and recently, security technology is required for wireless communication with the UAV and various devices for reconnaissance. In addition, the future information warfare will utilize advanced IT technology positively. Efforts are needed to integrate various systems and networks. However, these efforts are meaningful only when they can assume sufficient security in a newly changing information and communication environment. In this paper, we propose a new cryptographic synchronization for link encryption suitable for tactical data links. The proposed cryptographic synchronization is useful for T4 UAV link encryption, and it is also adaptable for lower BER, then we analyze the performances analysis of that.

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

Coordinated Beamforming Systems with Channel Prediction in Time-varying MIMO Broadcast Channel (시변 다중입출력 방송 채널을 위한 채널예측이 적용된 협력 빔형성 시스템)

  • Kim, Jin;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.302-308
    • /
    • 2011
  • In this paper we propose a coordinated beamforming(CBF) scheme considering the effects of feedback quantization and delay in time-varying multiple-input multiple-output(MIMO) broadcast channels. By equal power allocation per data stream, the proposed CBF scheme transmits multiple data streams per user terminals without additional feedback overhead when quantized feedback information is used. The proposed CBF scheme also applies a linear channel predictor to each user terminals to prevent errors due to feedback delays that are not evitable in practical wireless systems. Each user terminal utilizes Wiener filter to predict future channel responses and generates feedback information based on the predicted channels. Consequently the proposed CBF scheme adapting Wiener filter improves system performances compared with the conventional scheme using delayed feedback.

A Study on the Performance Characteristics of a Chirp RTLS over Wireless Channel with Gaussian Noise (가우시안 잡음이 존재하는 무선채널에서 Chirp RTLS 시스템의 성능 특성에 관한 연구)

  • Kang, Byeong-Gwon
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.201-207
    • /
    • 2013
  • The chirp signaling has been mainly used in radar systems due to its good correlation characteristics, and nowadays it is applied to real time locating system(RTLS). The RTLS with chirp signaling was chosen as a standard such as ISO/IEC 24730-5 and IEEE 802.15.4a. In this paper, the performance of a real time locating system with chirp signaling was evaluated and simulated with relative distance error rates. We considered three cases of S/I = -30[dB], -20[dB], and -10[dB] with Rician factor K=10 and K=20. The performance was enhanced with K factor improvement by 25%, 27% and 50% for respective three cases of S/I. As results, in case of S/I < -20[dB], the minimum signal power is required for performance improvement even though the line of sight component is helpful. And also, in case of S/I ${\geq}$ -20[dB], as the line of sight component is stronger the better performance is obtained.

A Study on the Transmission Characteristics and Channel Capacity of Telephone Line Communication System (전화선 통신 시스템의 전송특성 및 채널용량에 관한 연구)

  • Roh, Jae-Sung;Chang, Tae-Hwa
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.233-238
    • /
    • 2009
  • The advances in the digital communication and network technology, Internet technology and the proliferation of smart appliances in home, have dramatically increased the need for a high speed/high quality home network. As consumer electronic devices and computing devices are increasing in the home network, it is obvious that the data traffic of home network increases as well. Various home network devices want to access Internet servers to get multimedia contents. Therefore, we introduce TLC(Telephone Line Carrier) system for networked digital consumer electronic appliances within a house using Ethernet or wire/wireless technology. In the future home network environment, the primary purposes of the smart home network based TLC are to create low-cost, easily deployable, high performance, and wide coverage throughout the home. In this paper, the channel capacity of telephone line communication system is evaluated and compared as a function of transmission power, number of OFDM carrier, channel loss, and noise loss for smart home network.

  • PDF

Design of an Edge Computing System using a Raspberry Pi Module for Structural Response Measurement (구조물 응답측정을 위한 라즈베리파이를 이용한 엣지 컴퓨팅 시스템 설계)

  • Shin, Yoon-Soo;Kim, Junhee;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.375-381
    • /
    • 2019
  • Structural health monitoring to determine structural conditions at an early stage and to efficiently manage the energy requirements of buildings using systems that collects relevant data, is under active investigation. Structural monitoring requires cutting-edge technology in which construction, sensing, and ICT technologies are combined. However, the scope of application is limited because expensive sensors and specialized technical skills are often required. In this study, a Raspberry Pi module, one of the most widely used single board computers, a Lora module that is capable of long-distance communication at low power, and a high-performance accelerometer are used to construct a wireless edge computing system that can monitor building response over an extended time period. In addition, the Raspberry Pi module utilizes an edge computing algorithm, and only meaningful data is obtained from the vast amount of acceleration data acquired in real-time. The raw data acquired using Wi-Fi communication are compared to the Laura data to evaluate the accuracy of the data obtained using the system.

A Study on ZigBee-Based Routing Algorithm (스마트그리드를 위한 지그비 기반의 라우팅 알고리즘에 관한 연구)

  • Kang, Hyung-Seok;Im, Song-Bin;Oh, Young-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.137-148
    • /
    • 2012
  • In this paper, we proposed the location-aware coordinate routing algorithm for improving the performance of routing algorithm by using ZigBee in Smart Grid environment. A distributed address allocation scheme used an existing algorithm that has wasted in address space. The x, y and z coordinate axes from divided address space of 16 bit to solve this problems. However, coordinate routing does not take account of wireless link condition. If wiress link condition is not considered, when the routing table is updated, the nodes with bad link conditions are updated in the routing table and can be chosen as the next hop. This brings out the retransmissions because of received packet's errors. Also, because of these retransmissions, additional power is consumed. In this paper, we propose the location-aware coordinate routing algorithm considering wiress link condition, where reliable data transmission is made and the consumed enegy is minimize. and we compared and connected region and transition region of ZigBee location based routing in the aspect of average number of multi hops, subordinate packet delivery ratio, delay time, and energy consumption of proposed algorithm. It turned out that there were improvements in performances of each items.

Autolanding Mission Planning of the IT Convergence Hoverable UAV (IT 융합 회전익 무인항공기의 자동 착륙 임무수행)

  • Jung, Sunghun;Kim, Hyunsu
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.9-16
    • /
    • 2017
  • Researchers are now faced with a limited flight time of the hoverable UAV due to the sluggish technological advances of the Li-Po energy density and try to find a bypassing solution for the fully autonomous hoverable UAV mission planning. Although there are several candidate solutions, automated wireless charging is the most likely and realistic candidate and we are focusing on the autolanding strategy of the hoverable UAV in this paper since it is the main technology of it. We developed a hoverable UAV flight simulator including Li-Po battery pack simulator using MATLAB/Simulink and UAV flight and battery states are analyzed. The maximum motor power measured as 1,647 W occurs during the takeoff and cell voltage decreases down to 3.39 V during the procedure. It proves that the two Li-Po battery packs having 22 Ah and connected in series forming 12S1P are appropriate for the autolanding mission planning.