• Title/Summary/Keyword: Wireless insole system

Search Result 3, Processing Time 0.017 seconds

Comparison of the Contact Area, Maximum Pressure, Maximum Average Pressure and Maximum Force between Functional Insoles and General Insoles (기능성 인솔과 일반 인솔의 발에 대한 접촉 면적, 최대 압력, 최대 평균압력 및 최대 힘 비교)

  • Lee, Su-Kyoung
    • PNF and Movement
    • /
    • v.20 no.3
    • /
    • pp.431-441
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the changes in the contact area, maximum pressure, maximum mean pressure, and maximum force of functional insoles and general insoles when walking. Methods: Foot pressure was measured by the ignition of functional insoles and general insoles on Company N shoes. The foot pressure was measured using a precision pressure distribution meter (Pedar - X mobile system, Novel, Germany). Each insole sensor contained 99 independent cells and was inserted between the foot and the shoe. A wireless Bluetooth-type program was used to measure the pressure detected by the measuring insoles. In order to eliminate adaptation and fatigue caused by wearing the guide during the experiment, sufficient rest was taken between each experiment, and the wearing order was randomly selected. Results: Functional insole significantly increased the forefoot and midfoot (medial, lateral) (p<0.05), while total foot, forefoot, and rearfoot peak pressure significantly decreased (p < 0.05) compared to the general insole. Conclusion: In the functional insole, a high contact area was measured inside, even in the middle of the foot, leading to a proper change in foot pressure. It was confirmed that the contact area was reduced and dispersion occurred well. In addition, it was found that the maximum pressure in the front and back of the entire foot was reduced, so the weight pressure dispersion in the functional insole was evenly distributed, and the maximum average pressure change was similar.

A Kinetic Analysis of the Lower Extremity on the Normal and Abnormal Specificity of Walking on Stair for Twenties (이십대 청년의 정상 및 비정상 계단보행특성에 따른 하지의 운동역학적 분석)

  • Kim, Young-Ji;Lee, Young-Shin;Kim, Chang-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.391-396
    • /
    • 2011
  • Gait is walking attitude and indicating state. The body's gait is a good mix in the center of body mechanics and exercises to wake up gently at the same time switch is a pass which is complicated at legs various joints. The shifting action what swing phase and stance phase rhythmic movement of body. One from piece moves with different dot. Especially plain walking and stair walking as a vehicle has been used frequently. Characteristics of the stair walking while the balanced the horizontal and vertical movement. Stair walking often takes place in everyday. It requires large range more than walking at plain in the moment and joint range of gait motion. And consistently applied to joints and various types of loads at legs joint may involve joint disorders. In this study, spastic cerebral palsy existing artificial limbs for disabled people when developing calibration equinus deformity patients induce muscle pain when walking on stairs independently, to reduce the research. Comparing the characteristics of the walking up the stairs for analysis patellofemoral joint pain as a result it is to provide engineering data.

Top shoes foot pressure basis of the comparison analysis combine conical top foundation walking upon ground conditions (보행시 지반조건에 따른 팽이기초를 접목시킨 신발 족저압 분포 비교분석)

  • Kim, Yeon-Deok;Kim, Seg-Jin;Min, Byeong-Heon;Kim, Sang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.20-28
    • /
    • 2019
  • This study comparatively analyzes general walking shoes on the conical top foundation of the ground condition and the pressure distribution during walking with shoes that are currently under development. Two categories of footwear were used: general footwear and a footwear conical top foundation that is currently under development. Experiments were carried out on hard ground and sandy soil in 15 male twenties that satisfy the conditions of normal foot wearing 260 mm. The pressure during walking was measured using Techstorm's Wireless Insole System, and foot pressure was measured in 7 zones of the foot. Studies have shown different maximum forces, average pressures, and pressure distributions depending on the shoe and ground conditions. This study shows that shoes with general low pressure dispersion effects depending on the feet in hard ground and sand ground are different from shoes with the conical top foundation that is currently under development. It is expected that it will be useful for the development of shoes that can be worn in all hard ground and sandy ground by selecting various rubber materials through further research.