• Title/Summary/Keyword: Wireless identification system

Search Result 206, Processing Time 0.026 seconds

Hazard Identification and Risk Assessment for the Use of Passenger Portable Electronic Devices (승객 휴대 전자기기 사용에 대한 위해요인 식별 및 리스크 평가)

  • Lim, In-Kyu;Kim, Mu-Geun;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.288-294
    • /
    • 2018
  • The entertainment system of the aircraft has changed its paradigm in the form of using passenger electronic devices instead of using a fixed monitor. This has simplified the on-board equipment while the risk of safety has increased with the electric charging of portable electronic devices. Unlike personal portable electronic devices that do not have a transmission function, the use of Wi-Fi enabled electronic devices(T-PED) is allowed and the battery is required to be charged in the cabin. In this study, we used the NASA Aviation Safety Reporting System to investigate the effects of changes in wireless environment and entertainment service. Based on this, we analyzed the risks of personal electronic devices by sharing event occurrence cases caused by in-flight electronic equipment or passenger portable electronic devices(especially smart phones) from the viewpoint of aircraft safety management. This analysis includes identification of potential hazards and risk assessment, and finally the strategies for risk mitigation for safe use of portable electronic devices are suggested.

Design and Implementation of Management System on Product with High Mobility Using Embedded System and Wireless LAN (임베디드 시스템과 무선 랜을 이용한 이동성 높은 물품 관리시스템 설계 및 구현)

  • Lee, Jae-Hyun;Kwon, Kyung-Hee
    • Annual Conference of KIPS
    • /
    • 2002.11b
    • /
    • pp.1189-1192
    • /
    • 2002
  • 본 논문에서는 임베디드 시스템을 이용하여 물품관리에 응용할 수 있는 시스템을 설계 및 구현하고자 한다. 현재 활발하게 연구 발전하는 임베디드 시스템과 빠르게 보급되고 있는 무선랜을 이용하여 설계하였으며. 시스템 구성은 RFID(Radio Frequency IDentification)와 무선랜이 가능한 관리 단말기, 모바일 장비인 휴대폰과 PDA 그리고 중앙 관리 시스템으로 이루어졌다. 대량 물품관리 시스템의 사례로 대형 중고자동차 관리 시스템을 선택하였다. 하드웨어는 MPC860CPU 50MHz를 갖춘 XN860Core보드 및 Access Point는 AVAYA AP-1을 사용하였으며, 임베디드 시스템의 운영체제는 HardHat Linux2.0JE를 사용하였다. 중고자동차 관리시스템은 관리에서 영업까지 필요한 기능을 구현할 수 있도록 설계하였으며 향후 다른 분야로 응용할 수 있음을 보인다.

  • PDF

Design of A Faulty Data Recovery System based on Sensor Network (센서 네트워크 기반 이상 데이터 복원 시스템 개발)

  • Kim, Sung-Ho;Lee, Young-Sam;Youk, Yui-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • Sensor networks are usually composed of tens or thousands of tiny devices with limited resources. Because of their limited resources, many researchers have studied on the energy management in the WSNs(Wireless Sensor Networks), especially taking into account communications efficiency. For effective data transmission and sensor fault detection in sensor network environment, a new remote monitoring system based on PCA(Principle Component Analysis) and AANN(Auto Associative Neural Network) is proposed. PCA and AANN have emerged as a useful tool for data compression and identification of abnormal data. Proposed system can be effectively applied to sensor network working in LEA2C(Low Energy Adaptive Connectionist Clustering) routing algorithms. To verify its applicability, some simulation studies on the data obtained from real WSNs are executed.

PARKING GUIDE AND MANAGEMENT SYSTEM WITH RFID AND WIRELESS SENSOR NETWORK

  • Gue Hun Kim;Seung Yong Lee;Joong Hyun Choi;Youngmi Kwon
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1278-1282
    • /
    • 2009
  • In apartment type of housing, if resident's vehicle is registered in central control office and RFID TAG is issued, identification can be recognized from the time of entrance into parking lot and intelligent parking guide system can be activated based on the residents' profile. Parking Guide System leads a vehicle to the available parking space which is closest to the entrance gate of the vehicle's owner. And when residents forget where they parked their cars, they can query to the Parking Guide and Management System and get responses about the location. For the correct operation of this system, it is necessary to find out where the residents' cars have parked in real time and which lot is available for parking of other cars. RFID is very fancy solution for this system. RFID reader gathers the ID information in RFID TAGs in parked cars and updates the DB up to date. But, when non-residents' cars are parked inside apartment, RFID reader cannot identify them nor know the exact empty/occupied status of parking spaces because they don't react to RFID reader's query. So for the exact detection of empty/occupied status, we suggest the combined use of ultrasonic sensors and RFID. We designed a tree topology with intermediate data aggregators. The depth of tree is normally more than 3 from root (central office) to leaves (individual parking lots). The depth of 2 in tree topology brings about the bottleneck in communication and maintenance. We also designed the information fields used in RFID networks and Sensor Networks.

  • PDF

Design of the Covered Address Generation using the Super Increasing Sequence in Wireless Networks (무선 네트워크에서의 초증가 수열을 통한 주소 은닉 기법 설계)

  • Choun, Jun-Ho;Kim, Sung-Chan;Jang, Kun-Won;Do, Kyung-Hwa;Jun, Moon-Seog
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.411-416
    • /
    • 2007
  • The General security method of wireless network provides a confidentiality of communication contents based on the cryptographic stability against a malicious host. However, this method exposes the logical and physical addresses of both sender and receiver, so transmission volume and identification of both may be exposed although concealing that content. Covered address scheme that this paper proposes generates an address to which knapsack problem using super increasing sequence is applied, and replaces the addresses of sender and receiver with addresses from super increasing sequence. Also, proposed method changes frequently secret addresses, so a malicious user cannot watch a target system or try to attack the specific host. Proposed method also changes continuously a host address that attacker takes aim at. Accordingly, an attacker who tries to use DDoS attack cannot decide the specific target system.

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.

An Optimal AP Discovery Method in 802.11 Network (802.11망에서 최적의 AP 검색 기법)

  • Lee, Daewon
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.5
    • /
    • pp.55-62
    • /
    • 2012
  • With the development of mobile communications and Internet technology, there is a strong need to provide seamless and fast connectivity for roaming devices. Generally, the mobile host (MH) may have several available networks when entering a new wireless area. However, the standard of decision for user's internet connection is provided only the subsystem identification (SSID) and signal strength of access point (AP). These two standards could not enough to decide optimal AP to the MH. Therefore, to decide the optimal AP, more information is needed. In this paper, we present additional information such as status of MH, capacity, current load, and depth of network hierarchy, by router advertisement message at layer 3. Also, we proposed decision engine (DE) on the MH that analyzes APs and decides the optimal AP automatically by AP's status information. For the MH, wireless connection period is increased, the power consumption is decreased, and the signaling overhead is reduced. For AP and router, the load balancing is provided and the network topology can also be more efficient.

  • PDF

Performance of Passive UHF RFID System in Impulsive Noise Channel Based on Statistical Modeling (통계적 모델링 기반의 임펄스 잡음 채널에서 수동형 UHF RFID 시스템의 성능)

  • Jae-sung Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.835-840
    • /
    • 2023
  • RFID(Radio Frequency Identification) systems are attracting attention as a key component of Internet of Things technology due to the cost and energy efficiency of application services. In order to use RFID technology in the IoT application service field, it is necessary to be able to store and manage various information for a long period of time as well as simple recognition between the reader and tag of the RFID system. And in order to read and write information to tags, a performance improvement technology that is strong and reliable in poor wireless channels is needed. In particular, in the UHF(Ultra High Frequency) RFID system, since multiple tags communicate passively in a crowded environment, it is essential to improve the recognition rate and transmission speed of individual tags. In this paper, Middleton's Class A impulsive noise model was selected to analyze the performance of the RFID system in an impulsive noise environment, and FM0 encoding and Miller encoding were applied to the tag to analyze the error rate performance of the RFID system. As a result of analyzing the performance of the RFID system in Middleton's Class A impulsive noise channel, it was found that the larger the Gaussian noise to impulsive noise power ratio and the impulsive noise index, the more similar the characteristics to the Gaussian noise channel.

Design for Automatic Building of a Device Database and Device Identification Algorithm in Power Management System (전력 관리 시스템의 장치 데이터베이스 자동 구축 및 장치 식별 알고리즘 설계)

  • Hong, Sukil;Choi, Kwang-Soon;Hong, Jiman
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.403-411
    • /
    • 2014
  • In this paper, an algorithm of extracting the features of home appliances and automatically building a database to identify home appliances is designed and presented. For the verification, a software library supporting this algorithm is implemented and added to an power management system server, which was already implemented to support real-time monitoring of home appliances' power consumption status and controlling their power. The implemented system consists of a system server and clients, each of which measures the power consumed by a home appliance plugged in it and transmits the information to the server in real-time over a wireless network. Through experiments, it is verified that it is possible to identify any home appliance connected to a specific client.

The Optimized Detection Range of RFID-based Positioning System using k-Nearest Neighbor Algorithm

  • Kim, Jung-Hwan;Heo, Joon;Han, Soo-Hee;Kim, Sang-Min
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The positioning technology for a moving object is an important and essential component of ubiquitous communication computing environment and applications, for which Radio Frequency IDentification Identification(RFID) is has been considered as also a core technology for ubiquitous wireless communication. RFID-based positioning system calculates the position of moving object based on k-nearest neighbor(k-nn) algorithm using detected k-tags which have known coordinates and k can be determined according to the detection range of RFID system. In this paper, RFID-based positioning system determines the position of moving object not using weight factor which depends on received signal strength but assuming that tags within the detection range always operate and have same weight value. Because the latter system is much more economical than the former one. The geometries of tags were determined with considerations in huge buildings like office buildings, shopping malls and warehouses, so they were determined as the line in 1-Dimensional space, the square in 2-Dimensional space and the cubic in 3-Dimensional space. In 1-Dimensional space, the optimal detection range is determined as 125% of the tag spacing distance through the analytical and numerical approach. Here, the analytical approach means a mathematical proof and the numerical approach means a simulation using matlab. But the analytical approach is very difficult in 2- and 3-Dimensional space, so through the numerical approach, the optimal detection range is determined as 134% of the tag spacing distance in 2-Dimensional space and 143% of the tag spacing distance in 3-Dimensional space. This result can be used as a fundamental study for designing RFID-based positioning system.

  • PDF