• Title/Summary/Keyword: Wireless energy transmission

Search Result 656, Processing Time 0.036 seconds

Adjusting Transmission Power for Real-Time Communications in Wireless Sensor Networks

  • Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • As the new requirements for wireless sensor networks are emerging, real-time communications is becoming a major research challenge because resource-constrained sensor nodes are not powerful enough to accommodate the complexity of the protocol. In addition, an efficient energy management scheme has naturally been a concern in wireless sensor networks for a long time. However, the existing schemes are limited to meeting one of these two requirements. To address the two factors together, we propose real-time communications with two approaches, a protocol for satisfied conditions and one for unsatisfied. Under the satisfied requirement, existing real-time protocol is employed. On the other hand, for the unsatisfied requirement, the newly developed scheme replaces the existing scheme by adjusting the transmission range of some surplus nodes. By expanding the transmission range, the end-to-end delay is shortened because the number of intermediate nodes decreases. These nodes conserve their energy for real-time communications by avoiding other activities such as sensing, forwarding, and computing. Finally, simulation results are given to demonstrate the feasibility of the proposed scheme in high traffic environments.

A Survey of the Transmission-Power-Control Schemes in Wireless Body-Sensor Networks

  • Lee, Woosik;Kim, Heeyoul;Hong, Min;Kang, Min-Goo;Jeong, Seung Ryul;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1854-1868
    • /
    • 2018
  • A wireless body-sensor network (WBSN) refers to a network-configured environment in which sensors are placed on both the inside and outside of the human body. The sensors are much smaller and the energy is more constrained when compared to traditional wireless sensor network (WSN) environments. The critical nature of the energy-constraint issue in WBSN environments has led to numerous studies on the reduction of energy consumption of WBSN sensors. The transmission-power-control (TPC) technique adjusts the transmission-power level (TPL) of sensors in the WBSN and reduces the energy consumption that occurs during communications. To elaborate, when transmission sensors and reception sensors are placed in various parts of the human body, the transmission sensors regularly send sensor data to the reception sensors. As the reception sensors receive data from the transmission sensors, real-time measurements of the received signal-strength indication (RSSI), which is the value that indicates the channel status, are taken to determine the TPL that suits the current-channel status. This TPL information is then sent back to the transmission sensors. The transmission sensors adjust their current TPL based on the TPL that they receive from the reception sensors. The initial TPC algorithm made linear or binary adjustments using only the information of the current-channel status. However, because various data in the WBSN environment can be utilized to create a more efficient TPC algorithm, many different types of TPC algorithms that combine human movements or fuse TPC with other algorithms have emerged. This paper defines and discusses the design and development process of an efficient TPC algorithm for WBSNs. We will describe the WBSN characteristics, model, and closed-loop mechanism, followed by an examination of recent TPC studies.

Algorithm of Holding Time Control Using Delay-Tolerant Packet for Energy-Efficient Transmission (에너지 효율적인 전송을 위한 지연 허용 패킷의 유지시간 제어 알고리즘)

  • Ryu, Seung Min;Choi, Won Seok;Choi, Seong Gon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.4
    • /
    • pp.87-94
    • /
    • 2016
  • This paper proposes an energy transmission method to maximize energy efficiency of a based station. This method makes use of classification of service type to solve an inefficient use of transmission power, which is from exponential relationship between the legacy data throughput and transmission power. The proposed one is a way to find the most energy-efficiency points with the transmitted optimal amount of data on users in a base station of wireless network environment. For this, we propose EETA (Energy-Efficient Transmission Algorithm) which can control the amount of data and the holding time at the base station. As a result, the proposed method can improve the energy efficiency of about 10% compared to the legacy base station.

Simultaneous Information and Power Transfer for Multi-antenna Primary-Secondary Cooperation in Cognitive Radio Networks

  • Liu, Zhi Hui;Xu, Wen Jun;Li, Sheng Yu;Long, Cheng Zhi;Lin, Jia Ru
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.941-951
    • /
    • 2016
  • In this paper, cognitive radio and simultaneous wireless information and power transfer (SWIPT) are effectively combined to design a spectrum-efficient and energy-efficient transmission paradigm. Specifically, a novel SWIPT-based primary-secondary cooperation model is proposed to increase the transmission rate of energy/spectrum constrained users. In the proposed model, a multi-antenna secondary user conducts simultaneous energy harvesting and information forwarding by means of power splitting (PS), and tries to maximize its own transmission rate under the premise of successfully assisting the data delivery of the primary user. After the problem formulation, joint power splitting and beamforming optimization algorithms for decode-and-forward and amplify-and-forward modes are presented, in which we obtain the optimal PS factor and beamforming vectors using a golden search method and dual methods. Simulation results show that the proposed SWIPTbased primary-secondary cooperation schemes can obtain a much higher level of performance than that of non-SWIPT cooperation and non-cooperation schemes.

A Study on Distributed Self-Reliance Wireless Sensing Mechanism for Supporting Data Transmission over Heterogeneous Wireless Networks

  • Caytiles, Ronnie D.;Park, Byungjoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.32-38
    • /
    • 2020
  • The deployment of geographically distributed wireless sensors has greatly elevated the capability of monitoring structural health in social-overhead capital (SOC) public infrastructures. This paper deals with the utilization of a distributed mobility management (DMM) approach for the deployment of wireless sensing devices in a structural health monitoring system (SHM). Then, a wireless sensing mechanism utilizing low-energy adaptive clustering hierarchy (LEACH)-based clustering algorithm for smart sensors has been analyzed to support the seamless data transmission of structural health information which is essentially important to guarantee public safety. The clustering of smart sensors will be able to provide real-time monitoring of structural health and a filtering algorithm to boost the transmission of critical information over heterogeneous wireless and mobile networks.

Schedule communication routing approach to maximize energy efficiency in wireless body sensor networks

  • Kaebeh, Yaeghoobi S.B.;Soni, M.K.;Tyagi, S.S.
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • E-Health allows you to supersede the central patient wireless healthcare system. Wireless Body Sensor Network (WBSN) is the first phase of the e-Health system. In this paper, we aim to understand e-Health architecture and configuration, and attempt to minimize energy consumption and latency in transmission routing protocols during restrictive latency in data delivery of WBSN phase. The goal is to concentrate on polling protocol to improve and optimize the routing time interval and schedule communication to reduce energy utilization. In this research, two types of network models routing protocols are proposed - elemental and clustering. The elemental model improves efficiency by using a polling protocol, and the clustering model is the extension of the elemental model that Destruct Supervised Decision Tree (DSDT) algorithm has been proposed to solve the time interval conflict transmission. The simulation study verifies that the proposed models deliver better performance than the existing BSN protocol for WBSN.

Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜)

  • Yang, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.177-185
    • /
    • 2008
  • Research on media access control (MAC) scheme for Wireless Sensor Network (WSN) has been mainly focused on energy efficiency improvement, while interest on latency is relatively weak. However, end-to-end latency could be a critical limitation specifically in the multi-hop network such as wireless multimedia sensor networks. In this paper we propose a media access control scheme with distributed transmission power control to Improve end-to-end transmission latency as well as reduce power consumption in multi-hop wireless sensor networks. According to the simulation results, the proposed scheme is turned out to be an energy efficient scheme with improved end-to-end transmission latency.

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.

Energy Efficiency Analysis of Cellular Downlink Transmission with Network Coding over Rayleigh Fading Channels

  • Zhu, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.446-458
    • /
    • 2013
  • Recently, energy-efficient cellular transmission has received considerable research attention to improve the energy efficiency of wireless communication. In this paper, we consider a cellular network consisting of one base station (BS) and multiple user terminals and explore the network coding for enhancing the energy efficiency of cellular downlink transmission from BS to users. We propose the network coded cellular transmission scheme and conduct its energy consumption analysis with target outage probability and data rate requirements in Rayleigh fading environments. Then, the energy efficiency in Bits-per-Joule is further defined and analyzed to evaluate the number of bits delivered per Joule of energy cost. Numerical results show that the network coded cellular transmission significantly outperforms the traditional cellular transmission in terms of energy efficiency, implying that given a Joule of energy cost, the network coded cellular transmission scheme can deliver more bits than the traditional cellular transmission.

Context-Aware Mobile Gateway Relocation Scheme for Clustered Wireless Sensor Networks

  • Encarnacion, Nico N.;Yang, Hyunho
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • In recent years, researchers have been attracted to clustering methods to improve communication and data transmission in a network. Compared with traditional wireless networks, wireless sensor networks are energy constrained and have lower data rates. The concept of implementing a clustering algorithm in an existing project on gateway relocation is being explored here. Low energy adaptive clustering hierarchy (LEACH) is applied to an existing study on relocating a gateway. The study is further improved by moving the gateway to a specific cluster based on the number or significance of the events detected. The protocol is improved so that each cluster head can communicate with a mobile gateway. The cluster heads are the only nodes that can communicate with the mobile gateway when it (the mobile gateway) is out of the cluster nodes' transmission range. Once the gateway is in range, the nodes will begin their transmission of real-time data. This alleviates the load of the nodes that would be located closest to the gateway if it were static.