• Title/Summary/Keyword: Wireless data acquisition system

Search Result 119, Processing Time 0.026 seconds

Development of real-time wireless data measurement technique on Centrifugal experiment (원심모형 실험기의 실시간 무선데이터 측정시스템 구축)

  • Lee, Jong-Pil;Kim, You-Seok;Park, Jin-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1289-1293
    • /
    • 2010
  • A slipring or FORJ are usually adopted in order for power supply of Geo-centrifuge and input/output data acquisition. Since using slipring causes quite a lot electrical noise, an optical communication using FORJ becomes more general for data acquisition. Such data acquisition devices, however, require frequent maintenance and replacement due to deterioration by long term usage. DICT has set up a real-time wireless date acquisition system using wireless communication technology instead of FORJ. The system enables a remote measurement at any inertial acceleration field up to 100g level and provides as same performance as FORJ. The priority of this system is to use a normal modem substituting a special FORJ.

  • PDF

The Development of Real Scences Acquisition System for Outdoor Augmented Reality System (옥외용 증강현실 시스템의 실사획득장치 개발)

  • 최태종;김주완허웅
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.743-746
    • /
    • 1998
  • In this paper, we developed an outdoor augmented reality system which has remote real scences acquisition ability. The real scenes acquisition system consists of image acquisition system, tracking system, wireless data transceiver and power supply. Tracking system that consists of Tans Vector and RT-20 measures a position and attitude of the CCD camera that attached at the remote control helicopter. Wireless data transceiver system is utilized for data transmission of remote system that of attitude, position information, andreal scenes data that acquired by the CCD camera. Maximum propelling power of remote control helicopter is 15Kg, so we used 7.2V li-ion cell as a power supply for system minimize. As the results of experiment, the developing system presented application possibility of remote information acquisition system such as construction simulation & estimation, broadcasting, tour guide.

  • PDF

Development of Wireless Data Acquisition Device for Individual Load to Improve Function of Smart Meter Applied to AMI (AMI 적용 스마트 미터 기능향상을 위한 개별부하 상세 데이터 무선 취득장치 개발)

  • Sung, Byung-Chul;Bae, Sun-Ho;Park, Woo-Jae;Jeon, Seung-Wook;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1795-1803
    • /
    • 2011
  • Advanced Metering Infrastructure (AMI) is one of the important components to form a smart-gird, which is an advanced power system by combining the power system with the communication systems. This AMI makes it possible to exchange information between operators and consumers for the efficient and reliable operation of the power system through a smart meter or a In-Home Display. However, according to the increase of the demanded information such as the power quality, the accurate load-profile, and the billing data to help customers manage their power consumption, it is necessary to gather more accurate analytical data from each house appliances and transfer it to the smart meter for synthesizing the information and controlling each loads. In this paper, the development of the wireless data acquisition device for the individual load data metering, which is connected with the smart meter for advanced functions, is proposed. AVR, a kind of microcontroller, and Bluetooth are used and integrated into the proposed the wireless data acquisition device to transmit the detailed power data (voltage and current) to the smart meter. To verify the effectiveness of the proposed system, a hardware experiment is carried out including the confirmation of the possibility for providing the more various information by applying analysis algorithms to the obtained data. Also, the application structure of the wireless data acquisition device to gather the data from the various house appliances is presented.

Application of a wireless pressure sensing system to coastal wind monitoring

  • Pinelli, J.P.;Subramanian, C.S.;Lapilli, C.;Buist, L.
    • Wind and Structures
    • /
    • v.8 no.3
    • /
    • pp.179-196
    • /
    • 2005
  • This paper describes the application of a wireless data acquisition system to monitor wind pressures and velocities with absolute pressure sensors and an anemometer. The system was developed for future deployment, as part of a research effort currently underway to instrument coastal homes in Florida to monitor roof wind pressures during hurricanes. The proposed wireless system will replace the current system that involves a large amount of hardwired connections from the sensors to the data processing unit that requires labor intensive wiring and preparation of the home. The paper describes comparison studies and field tests to assess the performance of the system. The new system offers the advantages of light hardware, ease of installation, capacity for 48 hours of continuous data acquisition, good frequency and amplitude responses, and a relatively simple maintenance. However, the tests also show that the shape of the shell that has been previously used to protect the sensors might interfere with the proper measurement of the pressures.

Implementation of a Real-Time Data Acquisition System Based on Wireless Communication for Urban Rail Transit Substation (도시철도 변전소의 네트워크 기반 실시간 데이터 취득 시스템 구현)

  • Jung, Ho-Sung;Park, Young;Kim, Hyung-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • This paper is focused on implementing a real-time data acquisition system that checks power facility status by applying network based technology to Urban Transit substation power facilities and the results of its on-field tests. This system is composed of a sensor part, a measurement part, a transceiver part, a host computer, and a power source part. The system is designed to collect, save, analyze, and display the online state power facility AI (Analog Input). This system measures voltage and current from positive feeders and negative feeders where it is possible to check abnormalities of the substation‘s main power facilities. By monitoring abnormal data of the Urban Transit power facilities real-time and analyzing stored data, establishing procedures of optimized maintenance is possible.

A Real Time, Internet Accessed, Monitoring System of the Ocean and Harbor Environment (인터넷을 이용한 실시간 해양항만 환경모니터링 시스템의 설계)

  • 서규우;김가야
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • For effective conservation of the oceans and harbors, long-term and systematic development of the ocean and harbor monitoring system is essential. A monitoring system capable of real-time and accurate data acquisition is necessary for dealing with the level of contamination by situations, such as red tide and foods. This paper introduces an effective and economical real-time harbor environmental monitoring system that utilizes PCS wireless data communication technology. The monitoring system has various functions, such as multiple communication, TCP/IP protocol for wireless internet access, system time synchronization, and bi-directional communication between the measuring device and the server. The system has been implemented at Shinseondae harbor pier in Busan to validate the system's stability and effectiveness in data acquisition. The acquired real-time ocean and harbor environmental data is expected to have a large effect, when shared with the public through the Internet.

The Development of Outdoor Augmented Reality System by GPS (GPS를 이용한 옥외용 증강현실 시스템 개발)

  • Choi, T.J.;Jang, B.T.;Han, S.H.;Kim, J.K.;Hur, W.
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.153-156
    • /
    • 2000
  • In this paper, we developed an outdoor augmented reality system which has remote real scenes acquisition ability. The real scenes acquisition system consists of Image acquisition system, tracking system, wireless data transceiver and power supply. The tracking system consists of Tans Vector and RT-20 which measures a position and attitude of the CCD camera that attached to the remote control helicopter. Wireless data transceiver system is utilized for data transmission of remote system that of attitude, position information, and real scenes data that acquired by the CCD camera. Maximum propelling power of remote control helicopter is 15Kg, so we used 7.2V li-ion cell as a power supply for system minimize. As the results of experiment, the developing system presented application possibility of remote information acquisition system such as construction simulation & estimation, broadcasting, tour guide.

  • PDF

Wireless Triggering Pulse Generation for Digital X-ray Imaging System (디지털 x-ray 영상시스템을 위한 무선 트리거 발생기)

  • Ko, Dae-Sik;Lee, Jae-Cheol;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.163-169
    • /
    • 2007
  • In this paper, we propose a method of trigger pulse generation to capture the image on time by making a synchronization between the x-ray generator and digital x-ray image acquisition system. we designed a wireless trigger pulse generation circuit to make a synchronization between x-ray generator and digital image acquisition system and analysis its performance. When it starts to detect a certain level of x-ray radiation or above from the air, this method starts to generate a ACQ_START signal to indicate the timing for image acquisition starting from digital image acquisition system. Hence, when it starts to detect under certain level of x-ray signal from the air, this method starts to generate a ACC_END signal to indicate the timing for image acquisition stop from digital image acquisition system. Image acquisition is activated only this time between ACQ_START and ACQ_END signal. By doing this wireless detecting of x-ray signal from remote, we can get more accurate timing for capturing the x-ray image and any type of x-ray generator can be connected to digital image acquisition system, regards of wired protocol. This makes easy installation. We could get 3.5 line pair / mm resolution at 20 mAs of x-ray level with resolution chart. This is same or better image comparing to conventional wired result.

  • PDF

A wireless impedance analyzer for automated tomographic mapping of a nanoengineered sensing skin

  • Pyo, Sukhoon;Loh, Kenneth J.;Hou, Tsung-Chin;Jarva, Erik;Lynch, Jerome P.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.139-155
    • /
    • 2011
  • Polymeric thin-film assemblies whose bulk electrical conductivity and mechanical performance have been enhanced by single-walled carbon nanotubes are proposed for measuring strain and corrosion activity in metallic structural systems. Similar to the dermatological system found in animals, the proposed self-sensing thin-film assembly supports spatial strain and pH sensing via localized changes in electrical conductivity. Specifically, electrical impedance tomography (EIT) is used to create detailed mappings of film conductivity over its complete surface area using electrical measurements taken at the film boundary. While EIT is a powerful means of mapping the sensing skin's spatial response, it requires a data acquisition system capable of taking electrical impedance measurements on a large number of electrodes. A low-cost wireless impedance analyzer is proposed to fully automate EIT data acquisition. The key attribute of the device is a flexible sinusoidal waveform generator capable of generating regulated current signals with frequencies from near-DC to 20 MHz. Furthermore, a multiplexed sensing interface offers 32 addressable channels from which voltage measurements can be made. A wireless interface is included to eliminate the cumbersome wiring often required for data acquisition in a structure. The functionality of the wireless impedance analyzer is illustrated on an experimental setup with the system used for automated acquisition of electrical impedance measurements taken on the boundary of a bio-inspired sensing skin recently proposed for structural health monitoring.