• 제목/요약/키워드: Wireless body area networks

검색결과 85건 처리시간 0.021초

Cryptanalysis of an 'Efficient-Strong Authentiction Protocol (E-SAP) for Healthcare Applications Using Wireless Medical Sensor Networks'

  • Khan, Muhammad Khurram;Kumari, Saru;Singh, Pitam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권5호
    • /
    • pp.967-979
    • /
    • 2013
  • Now a day, Wireless Sensor Networks (WSNs) are being widely used in different areas one of which is healthcare services. A wireless medical sensor network senses patient's vital physiological signs through medical sensor-nodes deployed on patient's body area; and transmits these signals to devices of registered medical professionals. These sensor-nodes have low computational power and limited storage capacity. Moreover, the wireless nature of technology attracts malicious minds. Thus, proper user authentication is a prime concern before granting access to patient's sensitive and private data. Recently, P. Kumar et al. claimed to propose a strong authentication protocol for healthcare using Wireless Medical Sensor Networks (WMSN). However, we find that P. Kumar et al.'s scheme is flawed with a number of security pitfalls. Information stored inside smart card, if extracted, is enough to deceive a valid user. Adversary can not only access patient's physiological data on behalf of a valid user without knowing actual password, can also send fake/irrelevant information about patient by playing role of medical sensor-node. Besides, adversary can guess a user's password and is able to compute the session key shared between user and medical sensor-nodes. Thus, the scheme looses message confidentiality. Additionally, the scheme fails to resist insider attack and lacks user anonymity.

Global Healthcare Information System

  • Singh, Dhananjay;Lee, Hoon-Jae;Chung, Wan-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.365-368
    • /
    • 2008
  • This paper presents a new concept of IP-based wireless sensor networks and also introduces a routing protocol that is based on clustering for global healthcare information system. Low-power wireless personal area networks (LoWPANs) conform the standard by IEEE 802.15.4-2003 to IPv6 that makes 6lowpan. It characterized by low bit rate, low power, and low cost as well as protocol for wireless connections. The 6lowpan node with biomedical sensor devices fixed on the patient body area network that should be connected to the gateway in personal area network. Each 6lowpan nodes have IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analysis patient biomedical data from anywhere on globe by internet service provider equipments such as cell phone, PDA, note book. The system has been evaluated by technical verification, clinical test, user survey and current status of patient. We used NS-2.33 simulator for our prototype and also simulate the routing protocols. The result shows the performance of biomedical data packets in multi-hope routing as well as represents the topology of the networks.

  • PDF

Proposal of a hierarchical topology and spatial reuse superframe for enhancing throughput of a cluster-based WBAN

  • Hiep, Pham Thanh;Thang, Nguyen Nhu;Sun, Guanghao;Hoang, Nguyen Huy
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.648-657
    • /
    • 2019
  • A cluster topology was proposed with the assumption of zero noise to improve the performance of wireless body area networks (WBANs). However, in WBANs, the transmission power should be reduced as low as possible to avoid the effect of electromagnetic waves on the human body and to extend the lifetime of a battery. Therefore, in this work, we consider a bit error rate for a cluster-based WBAN and analyze the performance of the system while the transmission of sensors and cluster headers (CHs) is controlled. Moreover, a hierarchical topology is proposed for the cluster-based WBAN to further improve the throughput of the system; this proposed system is called as the hierarchical cluster WBAN. The hierarchical cluster WBAN is combined with a transmission control scheme, that is, complete control, spatial reuse superframe, to increase the throughput. The proposed system is analyzed and evaluated based on several factors of the system model, such as signal-to-noise ratio, number of clusters, and number of sensors. The calculation result indicates that the proposed hierarchical cluster WBAN outperforms the cluster-based WBAN in all analyzed scenarios.

Integrated Power Optimization with Battery Friendly Algorithm in Wireless Capsule Endoscopy

  • Mehmood, Tariq;Naeem, Nadeem;Parveen, Sajida
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.338-344
    • /
    • 2021
  • The recently continuous enhancement and development in the biomedical side for the betterment of human life. The Wireless Body Area Networks is a significant tool for the current researcher to design and transfer data with greater data rates among the sensors and sensor nodes for biomedical applications. The core area for research in WBANs is power efficiency, battery-driven devices for health and medical, the Charging limitation is a major and serious problem for the WBANs.this research work is proposed to find out the optimal solution for battery-friendly technology. In this research we have addressed the solution to increasing the battery lifetime with variable data transmission rates from medical equipment as Wireless Endoscopy Capsules, this device will analyze a patient's inner body gastrointestinal tract by capturing images and visualization at the workstation. The second major issue is that the Wireless Endoscopy Capsule based systems are currently not used for clinical applications due to their low data rate as well as low resolution and limited battery lifetime, in case of these devices are more enhanced in these cases it will be the best solution for the medical applications. The main objective of this research is to power optimization by reducing the power consumption of the battery in the Wireless Endoscopy Capsule to make it battery-friendly. To overcome the problem we have proposed the algorithm for "Battery Friendly Algorithm" and we have compared the different frame rates of buffer sizes for Transmissions. The proposed Battery Friendly Algorithm is to send the images on average frame rate instead of transmitting the images on maximum or minimum frame rates. The proposed algorithm extends the battery lifetime in comparison with the previous baseline proposed algorithm as well as increased the battery lifetime of the capsule.

WBAN MAC Protocols- Non-Saturation Modeling and Performance Analysis

  • Khan, Pervez;Ullah, Niamat;Kim, Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1462-1476
    • /
    • 2017
  • The current literature on discrete-time Markov chain (DTMC) based analysis of IEEE 802.15.6 MAC protocols for wireless body area networks (WBANs), do not consider the ACK timeout state, wherein the colliding nodes check the ill fate of their transmissions, while other contending nodes perform backoff check that slot as usual. In this paper, our DTMC model accurately captures the carrier sense multiple access with collision avoidance (CSMA/CA) mechanism of IEEE 802.15.6 medium access control (MAC) and allows the contending nodes performing backoff to utilize the ACK timeout slot during collisions. The compared rigorous results are obtained by considering a non-ideal channel in non-saturation conditions, and CSMA/CA parameters pertaining to UWB PHY of IEEE 802.15.6 MAC protocols.

A QoS-aware Adaptive Coloring Scheduling Algorithm for Co-located WBANs

  • Wang, Jingxian;Sun, Yongmei;Luo, Shuyun;Ji, Yuefeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5800-5818
    • /
    • 2018
  • Interference may occur when several co-located wireless body area networks (WBANs) share the same channel simultaneously, which is compressed by resource scheduling generally. In this paper, a QoS-aware Adaptive Coloring (QAC) scheduling algorithm is proposed, which contains two components: interference sets determination and time slots assignment. The highlight of QAC is to determine the interference graph based on the relay scheme and adapted to the network QoS by multi-coloring approach. However, the frequent resource assignment brings in extra energy consumption and packet loss. Thus we come up with a launch condition for the QAC scheduling algorithm, that is if the interference duration is longer than a threshold predetermined, time slots rescheduling is activated. Furthermore, based on the relative distance and moving speed between WBANs, a prediction model for interference duration is proposed. The simulation results show that compared with the state-of-the-art approaches, the QAC scheduling algorithm has better performance in terms of network capacity, average delay and resource utility.

Analysis of Absorption Loss by a Human Body in On-to-Off Body Communication at 2.45 GHz

  • Jeon, Jaesung;Lee, Sangwoo;Choi, Jaehoon;Kim, Sunwoo
    • Journal of electromagnetic engineering and science
    • /
    • 제15권2호
    • /
    • pp.97-103
    • /
    • 2015
  • This paper investigates the effect of absorption loss by a human body to the received signal strength with respect to on-body transmitting antenna positions in on-to-off wireless body area networks. This investigation is based on measurement results obtained from experiments performed on human bodies (male and female) using planar inverted-F antennas in an anechoic chamber. The total absorption loss by the human body is also presented through the SEMCAD-X simulations. Our investigation showed that the received signal strength becomes lower when the transmitting antenna is mounted at a specific position where more absorption loss is experienced. The statistical analyses of on-to-off body channel characteristics based on the measurement results are presented.

무선 USB 서비스 기반 웨어러블 컴퓨터 시스템의 Fast Range-Free 위치인식기법 (A Fast Localization Technique without Range Information in Wireless USB Services for Wearable Computer Systems)

  • 허경;손원성
    • 한국멀티미디어학회논문지
    • /
    • 제15권10호
    • /
    • pp.1228-1235
    • /
    • 2012
  • 본 논문에서는 웨어러블 컴퓨터 시스템을 위한 WUSB over WBAN 프로토콜에서 요구되는 저전력 소모 위치인식기술로서, 거리 정보를 필요로 하지 않는 위치인식알고리즘을 제안한다. 본 논문에서 제안하는 위치 인식알고리즘은 웨어러블 컴퓨터의 주변 장치를 구성하는 WUSB over WBAN 프로토콜 기반 센서노드에서 독립적으로 실행되어, range-free 한 방법을 사용하여, 각 센서노드의 위치를 신속하게 추정함으로써 전력소모를 최소화한다.

무선 BAN을 위한 다중채널 액세스 관리기법 (Multi-channel Access Control for Wireless Body Area Networks)

  • 이왕종;이승형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.1198-1201
    • /
    • 2009
  • 무선 BAN은 인체를 중심으로 3m 이내에서 이루어지는 통신을 위한 기술이다. 무선 BAN은 인체 내 외부에서 의료용 서비스를 위하여 여러 개의 채널로 구성된 MICS(Medical Implanted Communication Service) 주파수 대역을 사용한다. MICS는 다중 채널 환경에서 LBT(Listen Before Talk)와 AFA(Adaptive Frequency Agile)을 사용하여 장치간의 간섭을 최소화한다. 경쟁기반의 LBT와 AFA는 데이터 전송의 안정성을 보장하지 못할 뿐만 아니라 채널 홉핑(Hopping)으로 인한 전력 소비를 야기한다. 본 논문에서는 의료용 데이터의 주기적인 특성과 전송 안정성을 고려하여 예약 기법의 채널 액세스 관리 기법을 제안한다. 여러 채널 가운데 하나의 채널을 제어 채널로 설정하고 나머지는 데이터 전송을 위한 채널로 설정한다. 코디네이터는 제어 채널에서 beacon을 전송하여 디바이스에게 데이터 채널을 할당한다. 예약방식을 통하여 채널 할당의 안정성을 확보할 뿐만 아니라 디바이스의 요구 사항에 따라 채널을 유동적으로 결합함으로써 채널의 효율성을 개선한다. 또한 제어 채널 관리 방안을 통하여 LBT 장치와 상호 운용성을 확보하고, 시뮬레이션을 통하여 예약방식의 채널 관리 방안의 효율성을 검증한다.

WBAN 환경에서 패킷 충돌회피를 위한 백오프 기법 (A Backoff Mechanism for Packet Collision Avoidance in the WBAN Environment)

  • 조찬혁;안상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.136-137
    • /
    • 2016
  • WSN의 활용 분야 중 하나로 표준화된 IEEE 802.15.4 WBAN(wireless body area networks)은 웨어러블 디바이스의 무선 통신환경을 고려한 기술이다. WBAN은 높은 밀집도를 가지는 특징을 가지며, 이로 인하여 데이터 충돌이 큰 이슈가 되고 있다. 본 논문에서는 WBAN의 표준에서 제시한 메시지 우선순위를 백오프 알고리즘에 적용하여 WBAN 환경에 더 효율적인 전송을 제공하는 것을 목표로한다.