• Title/Summary/Keyword: Wireless Sensor Network(WSNs)

Search Result 281, Processing Time 0.029 seconds

A Lightweight Key Management for In-network Processing in WSNs (센서네트워크에서 인-네트워크 프로세싱을 위한 경량 키 관리 프로토콜)

  • Kim Kyeong-Tae;Kim Hyung-Chan;Ramakrishna R.S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.277-279
    • /
    • 2006
  • 본 논문에서는 Wireless Sensor Networks(WSNs)에서 에너지 소모를 줄이기 위해 사용되는 In-network processing에 대하여 보안이 강화된 레벨 키 기반의 Infrastructure를 설계하여 노드의 전복 공격에 대해 안전한 패킷 포워딩을 보장하는 프로토콜을 제시한다. 이러한 계층적 구조를 가지는 보안 Framework는 노드의 추가 혹은 퇴거가 발생했을 때 Re-keying 비용을 획기적으로 줄일 수 있다. 시뮬레이션 결과, 전체 네트워크 중 전복된 노드가 40%를 차지할 때, 제안된 프로토콜을 사용하게 되면 약 3%의 추가적인 라우팅 오버헤드 비용으로 15%의 향상된 종단간 패킷 전송률을 보여준다. 또한 Re-keying을 할 때 OFT와 비교하여 통신비용을 현저하게 줄일 뿐만 아니라 서버의 도움 없이 키를 업데이트 하기 때문에 분산환경에 적합한 특징을 갖는다.

  • PDF

An Improved Depth-Based TDMA Scheduling Algorithm for Industrial WSNs to Reduce End-to-end Delay (산업 무선 센서 네트워크에서 종단 간 지연시간 감소를 위한 향상된 깊이 기반 TDMA 스케줄링 개선 기법)

  • Lee, Hwakyung;Chung, Sang-Hwa;Jung, Ik-Joo
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.530-540
    • /
    • 2015
  • Industrial WSNs need great performance and reliable communication. In industrial WSNs, cluster structure reduces the cost to form a network, and the reservation-based MAC is a more powerful and reliable protocol than the contention-based MAC. Depth-based TDMA assigns time slots to each sensor node in a cluster-based network and it works in a distributed manner. DB-TDMA is a type of depth-based TDMA and guarantees scalability and energy efficiency. However, it cannot allocate time slots in parallel and cannot perfectly avoid a collision because each node does not know the total network information. In this paper, we suggest an improved distributed algorithm to reduce the end-to-end delay of DB-TDMA, and the proposed algorithm is compared with DRAND and DB-TDMA.

ENC-MAC: Energy-efficient Non-overlapping Channel MAC for Cognitive Radio enabled Sensor Networks

  • Kim, Bosung;Kim, Kwangsoo;Roh, Byeong-hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4367-4386
    • /
    • 2015
  • The concept of Internet of Things (IoT) has shed new light on WSN technologies. MAC protocol issues improving the network performance are important in WSNs because of the increase in demand for various applications to secure spectrum resources. Cognitive radio (CR) technology is regarded as a solution to the problems in this future wireless network. In recent years, energy efficiency has become an issue in CR networks. However, few relevant studies have been conducted. In this paper, an energy-efficient non-overlapping channel MAC (ENC-MAC) for CR-enabled sensor networks (CRSNs) is proposed. Applying the dedicated control channel approach, ENC-MAC allows the SUs to utilize channels in a non-overlapping manner, and thus spectrum efficiency is improved. Moreover, the cooperative spectrum sensing that allows an SU to use only two minislots in the sensing phase is addressed to en-hance energy efficiency. In addition, an analytical model for evaluating the performance, such as saturation throughput, average packet delay, and network lifetime, is developed. It is shown in our results that ENC-MAC remarkably outperforms existing MAC protocols.

An Accurate Radio Channel Model for Wireless Sensor Networks Simulation

  • Alejandro Martfnez-Sala;Jose-Maria Molina-Garcia-Pardo;Esteban Egea-Lopez;Javier Vales-Alonso;Leandro Juan-Llacer;Joan Garcia-Haro
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.401-407
    • /
    • 2005
  • Simulations are currently an essential tool to develop and test wireless sensor networks (WSNs) protocols and to analyze future WSNs applications performance. Researchers often simulate their proposals rather than deploying high-cost test-beds or develop complex mathematical analysis. However, simulation results rely on physical layer assumptions, which are not usually accurate enough to capture the real behavior of a WSN. Such an issue can lead to mistaken or questionable results. Besides, most of the envisioned applications for WSNs consider the nodes to be at the ground level. However, there is a lack of radio propagation characterization and validation by measurements with nodes at ground level for actual sensor hardware. In this paper, we propose to use a low-computational cost, two slope, log-normal path­loss near ground outdoor channel model at 868 MHz in WSN simulations. The model is validated by extensive real hardware measurements obtained in different scenarios. In addition, accurate model parameters are provided. This model is compared with the well-known one slope path-loss model. We demonstrate that the two slope log-normal model provides more accurate WSN simulations at almost the same computational cost as the single slope one. It is also shown that the radio propagation characterization heavily depends on the adjusted model parameters for a target deployment scenario: The model parameters have a considerable impact on the average number of neighbors and on the network connectivity.

Implementation of Static Address-Internetworking Scheme between Wireless Sensor Network and Internet (센서 네트워크와 인터넷과의 정적 주소 연동 방안 구현)

  • Kim, Jeong-Hee;Kwon, Hoon;Kwak, Ho-Young;Do, Yang-Hoi;Byun, Yung-Cheol;Kim, Do-Hyeun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.40-49
    • /
    • 2006
  • As a promising integrated circuit, wireless communication and micro-computing technology, the technology of sensor network that will lead the information technology industries of the next generation and realize the ubiquitous computing is one of the most active research topics and its research activities are also making today. From now on, each node, the network formation, and even the sensor network itself will interact with the generic network and evolve dynamically according to environmental changes in a process of continual creation and extinction. Therefore, address-internetworking between sensor network and generic network which are used different address mechanism is required. In this paper, we propose a static address-internetworking scheme for interactive networking between a sensor network and the Internet. The proposed scheme that possess a gateway approach to perform the protocol translation from one protocol to another, an overlay approach to constructs an overlay network on the WSNs and enables static internetworking between a sensor network address scheme based on Zigbee and the Internet address scheme based on the Internet Protocol. In addition, we verify the proposed scheme by an interconnection experiment.

  • PDF

Buffer and Rate Control Based Congestion Avoidance in Wireless Sensor Networks

  • Alam, Muhammad Mahbub;Hong, Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1291-1293
    • /
    • 2007
  • Due to dense deployment and innumerable amount of traffic flow in wireless sensor networks (WSNs), congestion becomes more common phenomenon from simple periodic traffic to unpredictable bursts of messages triggered by external events. Even for simple network topology and periodic traffic, congestion is a likely event due to dynamically time varying wireless channel condition and contention caused due to interference by concurrent transmissions. In this paper, we have proposed three mechanisms: upstream source count and buffer based rate control and snoop based MAC level ACK scheme to avoid congestion. The simulation results show that our proposed mechanism achieves around 80% delivery ratio even under bursty traffic condition

Load-Balancing Rendezvous Approach for Mobility-Enabled Adaptive Energy-Efficient Data Collection in WSNs

  • Zhang, Jian;Tang, Jian;Wang, Zhonghui;Wang, Feng;Yu, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1204-1227
    • /
    • 2020
  • The tradeoff between energy conservation and traffic balancing is a dilemma problem in Wireless Sensor Networks (WSNs). By analyzing the intrinsic relationship between cluster properties and long distance transmission energy consumption, we characterize three node sets of the cluster as a theoretical foundation to enhance high performance of WSNs, and propose optimal solutions by introducing rendezvous and Mobile Elements (MEs) to optimize energy consumption for prolonging the lifetime of WSNs. First, we exploit an approximate method based on the transmission distance from the different node to an ME to select suboptimal Rendezvous Point (RP) on the trajectory for ME to collect data. Then, we define data transmission routing sequence and model rendezvous planning for the cluster. In order to achieve optimization of energy consumption, we specifically apply the economic theory called Diminishing Marginal Utility Rule (DMUR) and create the utility function with regard to energy to develop an adaptive energy consumption optimization framework to achieve energy efficiency for data collection. At last, Rendezvous Transmission Algorithm (RTA) is proposed to better tradeoff between energy conservation and traffic balancing. Furthermore, via collaborations among multiple MEs, we design Two-Orbit Back-Propagation Algorithm (TOBPA) which concurrently handles load imbalance phenomenon to improve the efficiency of data collection. The simulation results show that our solutions can improve energy efficiency of the whole network and reduce the energy consumption of sensor nodes, which in turn prolong the lifetime of WSNs.

Self-Identification of Boundary's Nodes in Wireless Sensor Networks

  • Moustafa, Kouider Elouahed;Hafid, Haffaf
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.128-140
    • /
    • 2017
  • The wireless sensor networks (WSNs) became a very essential tool in borders and military zones surveillance, for this reason specific applications have been developed. Surveillance is usually accomplished through the deployment of nodes in a random way providing heterogeneous topologies. However, the process of the identification of all nodes located on the network's outer edge is very long and energy-consuming. Before any other activities on such sensitive networks, we have to identify the border nodes by means of specific algorithms. In this paper, a solution is proposed to solve the problem of energy and time consumption in detecting border nodes by means of node selection. This mechanism is designed with several starter nodes in order to reduce time, number of exchanged packets and then, energy consumption. This method consists of three phases: the first one is to detect triggers which serve to start the mechanism of boundary nodes (BNs) detection, the second is to detect the whole border, and the third is to exclude each BN from the routing tables of all its neighbors so that it cannot be used for the routing.

Exact BER Expression of 2-1-1 Relaying Scheme in Wireless Sensor Networks

  • Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.111-117
    • /
    • 2009
  • This paper presents an energy-efficient and bandwidth-efficient 2-1-1 relaying scheme in which a sensor node(SN) assists two others in their data transmission to a clusterhead in WSNs(Wireless Sensor Networks) using LEACH (Low-Energy Adaptive Clustering Hierarchy). We derive the closed-form BER expression of this scheme which is also a general BER one for the decode-and-forward cooperative protocol and prove that the proposed scheme performs the same as the conventional relaying scheme but obtains higher channel utilization efficiency. A variety of numerical results reveal the relaying can save the network energy up to 11 dB over single-hop transmission at BER of $10^{-3}$.

Geographical Time Back-off Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크에서 쥐치 정보의 시간차를 이용한 에너지 효율적인 라우팅 프로토콜)

  • Kim, Jae-Hyun;Sim, In-Bo;Kim, Hong;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.247-256
    • /
    • 2007
  • In this paper, we propose Geographical Back-off Routing (Geo-Back Routing) protocol for wireless sensor networks. Geo-Back uses the positions of nodes, a packet's destination and a optimal back-off time to make the packet forwarding decisions using only source and destination's location information without information about neighbor nodes' location or the number of one hop neighbor nodes. Under the frequent topology changes in WSNs, the proposed protocol can find optimal next hop location quickly without broadcast algorithm for update. In our analysis, Geo-Back's scalability and better performance is demonstrated on densely deployed wireless sensor networks.