• Title/Summary/Keyword: Wireless Power Generation

Search Result 155, Processing Time 0.021 seconds

Next-Generation Intelligent Radio Monitoring System (차세대 지능형 전파감시 시스템)

  • Yim, Hyun-Seok;Moon, Jin-Ho;Kim, Kyung-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8A
    • /
    • pp.846-851
    • /
    • 2008
  • With rapid development of communication industry, the kinds of communication service vary. According to the increasing use of radio waves, the intelligent and effective radio monitoring system needs to be developed, which is replaced for previous radio monitoring system. Next-generation intelligent radio monitoring system based on ITU-R, Rule of wireless facilities, and Radio Waves Act is used, and which can accurately and effectively function as effective radio monitoring system through spectrum analysis of channel power, frequency deviation, offset, and an occupied frequency bandwidth(99% or x-dB), about the analog and digital signal in On-Air of V/UHF bandwidth. Main function of the system has an radio quality measurement, unwanted electromagnetic signals (spurious, harmonic) measurement, high-speed spectrum measurement, frequency usage efficiency investigation, illegal radio exploration, working monitoring, In this paper, we proposes radio quality measurement, high-speed spectrum measurement of next-generation intelligent radio monitoring system.

Convergence system of offshore wind infrastructure monitoring using the RC submarine (RC잠수함을 이용한 해상풍력하부구조 모니터링 융합시스템)

  • Bang, Gul-Won;Bang, Sang-Won;Kim, Yong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.6
    • /
    • pp.177-183
    • /
    • 2015
  • The image information acquired by a model submarine is transmitted through the repeater. The control signal of a position for submarine and its speed is also controlled by the repeater. Shooting images of underwater circumstances are transmitted to the repeater where the received signal controls a position and speed of underwater submarine. This repeater is combined by a buoy that is floating on the surface to relay the signal of image as well as control between a control unit and a submarine whereas the repeater communicates wirelessly with a control unit. Due to wire communication between the repeater and the submarine, the underwater exploration can be smoothly carried out without a risk of loss of a model submarine. Also, connecting to the repeater and control unit wirelessly makes it possible to conduct easily the underwater exploration. The convergence technology that combines a wireless communication and a control as well as a model submarine is designed.

Simplified PAR Reduction Technique for MIMO-OFDM System (MIMO-OFDM 시스템에서 간략화된 PAR 감쇄 기법)

  • Song Hyoung-Kyu;Kook Hyung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1181-1185
    • /
    • 2005
  • A combining of MIMO signal processing with OFDM is regarded as a promising solution of enhancing the performance of next generation wireless system. Therefore, in this paper, an OFDM-based wireless system employing layered space-time architecture is considered for a high-rate transmission. In the MIMO-OFDM system, we evaluate the PAR performance using the SLM approaches. The investigated SLM scheme for MIMO-OFDM signals selects the transmitted sequence with lowest average PAR over all transmitting antennas and retrieves the side information very accurately at the expense of a slight degradation of the PAR performance. The low probability of false side information can improve the overall detection performance of the MIMO-OFDM system with erroneous side information compared to the ordinary SLM approache, respectively. Also, we provide closed form of the average BER performance in MIMO-OFDM system using analytic approach.

Spectrum Sharing between IMT-Advanced System Based on MIMO SDMA Techniques and FWA System (MIMO SDMA에 기반한 IMT-Advanced 시스템과 FWA 시스템간의 주파수 공유)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.808-816
    • /
    • 2010
  • Spectrum sharing between wireless systems becomes a critical issue due to emerging new technologies and spectrum shortage. Since WRC-07 allocated 3400-3600MHz band for the coming fourth generation (4G) or IMT-Advanced on a co-primary basis along with existing Fixed Wireless Access (FWA), it requires spectrum sharing studies to solve the interference problems between two systems. In this paper, I propose the separation distance between service coverages as a sharing fundamental criterion based on the interference to noise power ratio (I/N) received in a FWA base station from several IMT-Advanced base stations on the cellular systems. Especially, some results imply that I/N values compared to the worst case can be greatly reduced with MIMO SDMA interference mitigation technique of IMT-Advanced base stations so that these two systems can co-exist in the same frequency with appropriate separation distance.

Dragon-MAC: Securing Wireless Sensor Network with Authenticated Encryption (Dragon-MAC: 인증 암호를 이용한 효율적인 무선센서네크워크 보안)

  • Lim, Shu-Yun;Pu, Chuan-Chin;Lim, Hyo-Taek;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1519-1527
    • /
    • 2007
  • In order to combat the security threats that sensor networks are exposed to, a cryptography protocol is implemented at sensor nodes for point-to-point encryption between nodes. Given that nodes have limited resources, symmetric cryptography that is proven to be efficient for low power devices is implemented. Data protection is integrated into a sensor's packet by the means of symmetric encryption with the Dragon stream cipher and incorporating the newly designed Dragon-MAC Message Authentication Code. The proposed algorithm was designed to employ some of the data already computed by the underlying Dragon stream cipher for the purpose of minimizing the computational cost of the operations required by the MAC algorithm. In view that Dragon is a word based stream cipher with a fast key stream generation, it is very suitable for a constrained environment. Our protocol regarded the entity authentication and message authentication through the implementation of authenticated encryption scheme in wireless sensor nodes.

A Robust Energy Saving Data Dissemination Protocol for IoT-WSNs

  • Kim, Moonseong;Park, Sooyeon;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5744-5764
    • /
    • 2018
  • In Wireless Sensor Networks (WSNs) for Internet of Things (IoT) environment, fault tolerance is a most fundamental issue due to strict energy constraint of sensor node. In this paper, a robust energy saving data dissemination protocol for IoT-WSNs is proposed. Minimized energy consumption and dissemination delay time based on signal strength play an important role in our scheme. The representative dissemination protocol SPIN (Sensor Protocols for Information via Negotiation) overcomes overlapped data problem of the classical Flooding scheme. However, SPIN never considers distance between nodes, thus the issue of dissemination energy consumption is becoming more important problem. In order to minimize the energy consumption, the shortest path between sensors should be considered to disseminate the data through the entire IoT-WSNs. SPMS (Shortest Path Mined SPIN) scheme creates routing tables using Bellman Ford method and forwards data through a multi-hop manner to optimize power consumption and delay time. Due to these properties, it is very hard to avoid heavy traffic when routing information is updated. Additionally, a node failure of SPMS would be caused by frequently using some sensors on the shortest path, thus network lifetime might be shortened quickly. In contrast, our scheme is resilient to these failures because it employs energy aware concept. The dissemination delay time of the proposed protocol without a routing table is similar to that of shortest path-based SPMS. In addition, our protocol does not require routing table, which needs a lot of control packets, thus it prevents excessive control message generation. Finally, the proposed scheme outperforms previous schemes in terms of data transmission success ratio, therefore our protocol could be appropriate for IoT-WSNs environment.

Design of SC-FDE System Using CAZAC Sequence (CAZAC Sequence를 이용한 SC-FDE 시스템 설계)

  • Kang, Hoon;Im, Se-Bin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.169-178
    • /
    • 2007
  • In this paper, we propose a signal structure and its optimum receiver to improve performance of SC-FDE(Single Carrier with Frequency Domain Equalization) system. Conventional SC-FDE systems have a drawback of power unbalance in frequency domain due to generation of pilot signals in time domain. The unbalanced power in frequency domain induces a channel estimation error and the performance of the receiver is degraded significantly. To overcome the drawback we apply CAZAC sequence which has constant power distribution in time and frequency domain. We design the signal structure to improve the performance with the repeated CAZAC sequence, and we design a receiver to optimize the proposed structure. Computer simulation results show that the proposed structure is superior to the conventional structure considering frame synchronization, frequency synchronization and channel equalization on typical wireless mobile channel environment.

An Implementation of Realtime Remote-Monitoring System for Distributed Photovoltaic Power Plants (분산형 태양광 발전 시스템을 위한 실시간 원격 모니터링 시스템 구현)

  • Kim, Chang-Joon;Kim, Jung-Ki;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2450-2456
    • /
    • 2015
  • In this paper, we propose a real-time remote monitoring system for distributed solar power generation system. The proposed system consists of PVC, UTC, OTC and monitoring server. PVC collects the operational information from the PV's inverter via serial interface. The sensing data is transmitted to the server by wireless communications and stored in the DB server. The PV's status is monitored via UTC, and the operating of PVC and UTC are managed by OTC. In addition, by providing information about the power generated by PV system and failure diagnosis in real time, the proposed system shows the possibility of reducing the maintenance costs and improved failure recovery time.

Harmonic Signal Linearization of Nonlinear Power Amplifier Using Digital Predistortion for Multiband Wireless Transmitter (다중 대역 송신을 위한 디지털 사전 왜곡 기법을 이용한 비선형 전력 증폭기의 고조파 신호 선형화)

  • Oh, Kyung-Tae;Ku, Hyun-Chul;Kim, Dong-Su;Hahn, Cheol-Koo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1339-1349
    • /
    • 2008
  • In this paper, a nonlinear relationship between an input complex envelope and an output complex envelope of m-th harmonic zone is theoretically analyzed, and AM/$AM_m$ and AM/$PM_m$ are defined. A scheme to extract these characteristics from measured in-phase and quadrature-phase data is suggested. The proposed analysis is verified with a fundamental-fundamental and fundamental-third harmonic measurements for a InGaP power amplifier(PA). Based on the harmonic-band nonlinear analysis and extraction scheme, a new technique to send a signal in m-th harmonic band with a harmonic signal Linearization Digital Predistortion(DPD) scheme is presented. A numerical analysis and a Look-Up Table(LUT) based DPD algorithms to linearize output signal on m-th harmonic zone are developed. For a 16- and a 64-QAM input signals, a DPD for third harmonic signal linearization is implemented, and output spectrum and signal constellation are measured. The wholly distorted signals are linearized, and thus the measured Error Vector Magnitudes (EVM) are 6.4 % and 6.5 % respectively. The results show that a proposed scheme linearizes a nonlinearly distorted harmonic band signals. The proposed nonlinear analysis and predistortion scheme can be applied to multiband transmitter in next generation software defined radio(SDR)/cognitive radio(CR) wireless system.

Design of Compact Microstrip Patch Antenna for Short Distance WLAN (근거리 WLAN을 위한 광대역 마이크로스트립 패치 안테나 설계)

  • Choi, Yong-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • In this paper, we designed a multiband monopole antenna for next-generation WLAN system. In conventional WLAN system, UWB antennas were used together, and, because the radiation occurs in different parts depending on the antenna structure, it has the disadvantage of having an unstable impulse response characteristic due to dispersion characteristics. Although a UWB antenna that has suitable radiation pattern for WLAN band, it does not have good impedance matching and has severe echo. Therefore, in this paper, a monopole antenna was designed by using CPW power feed so that various impedances can be easily implemented when designing an antenna and more parameters can be derived that can be used for design for optimal performance.