• Title/Summary/Keyword: Wireless Network Design

Search Result 1,375, Processing Time 0.024 seconds

A Design of Service Migration Mechanism in HTML5-based Convergence Service (HTML5 기반 융합 서비스의 서비스이동 메커니즘 설계)

  • Choi, Hun-Hoi;Song, Eun-Ji;Kim, Geun-Hyung;Kim, Hwa-Sook;Cho, Ki-Seong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.540-551
    • /
    • 2012
  • Recently, the W3C has developed the HTML5 standard which gives the basis for providing various web applications on the web environments. Because of the advent of the smart devices and the broadband wireless network, users can accesse the web applications on the smart devices at anytime and anywhere. In addition, the demand on the multiscreen services, which enables users to use the appropriate device to their situation, has increased, since users have various smart devices. In this paper, we propose the grouping mechanism of web objects on the HTML5 based web platform, the extraction mechanism of the web object information which is used to create the web object on other devices, and the web object creation mechanism based on the received web object information. In addition, we propose the web service migration architecture between devices on the open web platform and implement the grouping, extraction and creation mechanism of the web objects on the test web document and generic web document with Chrome extension. Finally, we implement the delivery mechanism of the web object information between devices using the node.js and the WebSocket technologies.

Design of CPW-Fed Printed Monopole Antenna for CDMA/WLAN (CDMA/WLAN 겸용 CPW 급전 인쇄형 모노폴 안테나 설계)

  • Nam, Ju-Yeol;Song, Won-Ho;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.623-629
    • /
    • 2015
  • In the present study, a coplanar waveguide (CPW)-fed printed monopole antenna with an inverted n-shaped slot is newly proposed for dual band operations which cover bandwidths of CDMA (1.85~2.025 GHz) and WLAN (2.4~2.484 GHz) as well as implementation of omnidirectional radiation pattern. For enhancement of impedance bandwidth ($S11{\leq}10dB$) in 2.4 GHz WLAN frequency band, an inverted n-shaped slot instead of the previous n-shaped slot is etched on the printed radiating monopole. The proposed antenna is designed and fabricated on one side of FR4 substrate with dielectric constant of 4.4, thickness of 1.6 mm, and size of $50{\times}25mm^2$. It has been observed that the measured impedance bandwidths are 280 MHz (1.84~2.12 GHz) in frequency band of CDMA and 420 MHz (2.38~2.8 GHz) in WLAN frequency band respectively. It is noticeable that impedance bandwidth in 2.4 GHz frequency band of WLAN is enlarged to three times due to use of inverted L-shaped slot in comparison with impedance bandwidth 140 MHz (2.39~2.53 GHz) obtained by use of the previous n-shaped slot. In addition, good omnidirectional radiation patterns have been observed over the entire frequency band of interest.

Design of Serendipity Service Based on Near Field Communication Technology (NFC 기반 세렌디피티 시스템 설계)

  • Lee, Kyoung-Jun;Hong, Sung-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.293-304
    • /
    • 2011
  • The world of ubiquitous computing is one in which we will be surrounded by an ever-richer set of networked devices and services. Especially, mobile phone now becomes one of the key issues in ubiquitous computing environments. Mobile phones have been infecting our normal lives more thoroughly, and are the fastest technology in human history that has been adapted to people. In Korea, the number of mobile phones registered to the telecom company, is more than the population of the country. Last year, the numbers of mobile phone sold are many times more than the number of personal computer sold. The new advanced technology of mobile phone is now becoming the most concern on every field of technologies. The mix of wireless communication technology (wifi) and mobile phone (smart phone) has made a new world of ubiquitous computing and people can always access to the network anywhere, in high speed, and easily. In such a world, people cannot expect to have available to us specific applications that allow them to accomplish every conceivable combination of information that they might wish. They are willing to have information they want at easy way, and fast way, compared to the world we had before, where we had to have a desktop, cable connection, limited application, and limited speed to achieve what they want. Instead, now people can believe that many of their interactions will be through highly generic tools that allow end-user discovery, configuration, interconnection, and control of the devices around them. Serendipity is an application of the architecture that will help people to solve a concern of achieving their information. The word 'serendipity', introduced to scientific fields in eighteenth century, is the meaning of making new discoveries by accidents and sagacity. By combining to the field of ubiquitous computing and smart phone, it will change the way of achieving the information. Serendipity may enable professional practitioners to function more effectively in the unpredictable, dynamic environment that informs the reality of information seeking. This paper designs the Serendipity Service based on NFC (Near Field Communication) technology. When users of NFC smart phone get information and services by touching the NFC tags, serendipity service will be core services which will give an unexpected but valuable finding. This paper proposes the architecture, scenario and the interface of serendipity service using tag touch data, serendipity cases, serendipity rule base and user profile.

A Design of Key Generation and Communication for Device Access Control based on Smart Health Care (스마트 헬스케어 기반의 디바이스 접근제어를 위한 키 생성 및 통신기법 설계)

  • Min, So-Yeon;Lee, Kwang-Hyong;Jin, Byung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.746-754
    • /
    • 2016
  • Smart healthcare systems, a convergent industry based on information and communications technologies (ICT), has emerged from personal health management to remote medical treatment as a distinguished industry. The smart healthcare environment provides technology to deliver vital information, such as pulse rate, body temperature, health status, and so on, from wearable devices to the hospital network where the physician is located. However, since it deals with the patient's personal medical information, there is a security issue for personal information management, and the system may be vulnerable to cyber-attacks in wireless networks. Therefore, this study focuses on a key-development and device-management system to generate keys in the smart environment to safely manage devices. The protocol is designed to provide safe communications with the generated key and to manage the devices, as well as the generated key. The security level is analyzed against attack methods that may occur in a healthcare environment, and it was compared with existing key methods and coding capabilities. In the performance evaluation, we analyze the security against attacks occurring in a smart healthcare environment, and the security and efficiency of the existing key encryption method, and we confirmed an improvement of about 15%, compared to the existing cipher systems.

Design and Implementation of Factory Equipment Monitoring System using Grid-based Key Pre-Distribution (그리드 기반 키 선분배 방식을 사용하는 공장 설비 모니터링 시스템 설계 및 구현)

  • CHO, YANGHUI;PARK, JAEPYO;YANG, SEUNGMIN
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.51-56
    • /
    • 2016
  • In this paper, we propose an Arduino-based plant monitoring system. The proposed system is based on the Arduino platform, using an environmental sensor and a pressure sensor for measuring temperature, humidity and illuminance in order to monitor the state of the environment and the facilities of the plant. Monitoring data are transmitted to a ZigBee coordinator connected to a server through a radio frequency transceiver. When using a pressure sensor and the environment sensor data stored on the host server, checking the pressure in the environment of the plant and equipment is intended to report any alarm status to the administrator. Using a grid line-based key distribution scheme, the authentication node dynamically generates a data key to protect the monitoring information. Applying a ZigBee wireless sensor network does not require additional wiring for the actual implementation of a plant monitoring system. Possible working-environment monitoring of an efficient plant can help analyze the cause of any failure by backtracking the working environment when a failure occurs. In addition, it is easy to expand or add a sensor function using the Arduino platform and an expansion board.

Design and Implementation of ISO/IEEE 11073 DIM Transmission Structure Based on oneM2M for IoT Healthcare Service (사물인터넷 헬스케어 서비스를 위한 oneM2M기반 ISO/IEEE 11073 DIM 전송 구조 설계 및 구현)

  • Kim, Hyun Su;Chun, Seung Man;Chung, Yun Seok;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.3-11
    • /
    • 2016
  • In the environment of Internet of Things (IoT), IoT devices are limited by physical components such as power supply and memory, and also limited to their network performance in bandwidth, wireless channel, throughput, payload, etc. Despite these limitations, resources of IoT devices are shared with other IoT devices. Especially, remote management of the information of devices and patients are very important for the IoT healthcare service, moreover, providing the interoperability between the healthcare device and healthcare platform is essential. To meet these requirements, format of the message and the expressions for the data information and data transmission need to comply with suitable international standards for the IoT environment. However, the ISO/IEEE 11073 PHD (Personal Healthcare Device) standards, the existing international standards for the transmission of health informatics, does not consider the IoT environment, and therefore it is difficult to be applied for the IoT healthcare service. For this matter, we have designed and implemented the IoT healthcare system by applying the oneM2M, standards for the Internet of Things, and ISO/IEEE 11073 DIM (Domain Information Model), standards for the transmission of health informatics. For the implementation, the OM2M platform, which is based on the oneM2M standards, has been used. To evaluate the efficiency of transfer syntaxes between the healthcare device and OM2M platform, we have implemented comparative performance evaluation between HTTP and CoAP, and also between XML and JSON by comparing the packet size and number of packets in one transaction.

Digital Data Communication System for Mobile Network System Using CC1020 Chip (CC1020 Chip을 사용한 모바일 네트워크를 위한 디지털 데이터 통신 시스템)

  • Lim, Hyun-Jin;So, Heung-Kuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.58-62
    • /
    • 2007
  • Digital communication is important for reliability and mobilization of the multi-channel communication systems. Transmitting and receiving data for the mobilization should be possible in anywhere and in anytime. And this system must be designed light weight small size and low power. One are essential technology for implementing the mobile wireless communication system on the age of ubiquotos. Requirements in constructing such communication field are followings. At first data transmitting and receiving should be carried out by a simple command. Second, the device should be designed as hand-hold type and low power consumption. Third, data communication should be reliable. As one of examples, car to car system which is popular in the market is introduced here, All traffic information in highway is transmitted from one car to another by using this system which can prevent possible traffic accident. This paper shows the design of a digital data communication system with CC1020 chip. This CC1020 makes easy frequency selection and easy switch from the transmit mode to the receive mode by simple setting of a memory register in the chip. The transmit power of this system is designed 10dBm and its communication range is about 100m. The power supplied this system is 3V considered as low power. The sleep mode can be easily entered during transmit mode or receive mode. We shows the program algorithm of CC1020 and interface circuit between MCU and CC1020. We shows the Photo of the CC1020 Module and Atmega128 Module.. We analysed the receiver rate with this system.

  • PDF

Performance Analysis of Fast Handover Scheme Based on Secure Smart Mobility in PMIPv6 Networks (프록시 모바일 IPv6 네트워크에서 안전한 스마트 이동성에 기반한 빠른 핸드오버 기법의 성능분석)

  • Yoon, KyoungWon;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.121-133
    • /
    • 2013
  • Defect-free transfer service on the Next-generation wireless network extensive roaming mobile node (MN) to provide efficient mobility management has become very important. MIPv6(Mobility IPv6) is one of mobility management scheme proposed by IETF(Internet Engineering Task Force), and IPv6-based mobility management techniques have been developed in various forms. One of each management techniques, IPv6-based mobility management techniques for PMIPv6 (MIPv6) system to improve the performance of a variety of F-PMIPv6 (Fast Handover for Proxy MIPv6) is proposed. However, the F-PMIPv6 is cannot be excellent than PMIPv6 in all scenarios. Therefor, to select a proper mobility management scheme between PMIPv6 and F-PMIPv6 becomes an interesting issue, for its potenrials in enhancing the capacity and scalability of the system. In this paper, we develop an analytical model to analyze the applicability of PMIPv6 and F-PMIPv6. Based on this model, we design an Secure Smart Mobility Support(SSM) scheme that selects the better alternative between PMIPv6 and F-PMIPv6 for a user according to its changing mobility and service characteristics. When F-PMIPv6 is adopted, SSM chooses the best mobility anchor point and regional size to optimize the system performance. Numerical results illustrate the impact of some key parameters on the applicability of PMIPv6 and F-PMIPv6. Finally, SSM has proven even better result than PMIPv6 and F-PMIPv6.

Design and Implement of 50MHz 10 bits DAC based on double step Thermometer Code (50MHz 2단 온도계 디코더 방식을 사용한 10 bit DAC 설계)

  • Jung, Jun-Hee;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.6
    • /
    • pp.18-24
    • /
    • 2012
  • This paper reports the test results of a 50MHz/s 10 bits DAC developed with $0.18{\mu}m$ CMOS process for the wireless sensor network application. The 10bits DAC, not likely a typical segmented type, has been designed as a current driving type with double step thermometer decoding architecture in which 10bits are divided into 6bits of MSB and 4bits of LSB. MSB 6bits are converted into 3 bits row thermal codes and 3 bits column thermal codes to control high current cells, and LSB 4 bits are also converted into thermal codes to control the lower current cells. The high and the lower current cells use the same cell size while a bias circuit has been designed to make the amount of lower unit current become 1/16 of high unit current. All thermal codes are synchronized with output latches to prevent glitches on the output signals. The test results show that the DAC consumes 4.3mA DC current with 3.3V DC supply for 2.2Vpp output at 50MHz clock. The linearity characteristics of DAC are the maximum SFDR of 62.02dB, maximum DNL of 0.37 LSB, and maximum INL of 0.67 LSB.

A Novel QoS Provisoning Scheme Based on User Mobility Patterns in IP-based Next-Generation Mobile Networks (IP기반 차세대 모바일 네트워크에서 사용자 이동패턴에 기반한 QoS 보장기법)

  • Yang, Seungbo;Jeong, Jongpil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.25-38
    • /
    • 2013
  • Future wireless systems will be required to support the increasingly nomadic lifestyle of people. This support will be provided through the use of multiple overlaid networks which have very different characteristics. Moreover, these networks will be required to support the seamless delivery of today's popular desktop services, such as web browsing, interactive multimedia and video conferencing to the mobile devices. Thus one of the major challenges in the design of these mobile systems will be the provision of the quality of service (QoS) guarantees that the applications demand under this diverse networking infrastructure. We believe that it is necessary to use resource reservation and adaptation techniques to deliver these QoS guarantee to applications. However, reservation and pre-configuration in the entire service region is overly aggressive, and results in schemes that are extremely inefficient and unreliable. To overcome this, the mobility pattern of a user can be exploited. If the movement of a user is known, the reservation and configuration procedure can be limited to the regions of the network a user is likely to visit. Our proposed Proxy-UMP is not sensitive to increase of the search cost than other schemes and shows that the increasing rate of total cost is low as the SMR increases.