• 제목/요약/키워드: Wireless Multi-hop

검색결과 468건 처리시간 0.021초

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

TTCG : Three-Tier Context Gathering Technique for Mobile Devices (이동 단말기를 위한 Three-Tier 상황정보 수집 기법)

  • Sho, Su-Hwan;Kim, Seung-Hoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제14권1호
    • /
    • pp.64-72
    • /
    • 2009
  • Previous research on sensor networks mainly focused on efficient transmission of data from sensors to fixed sink nodes. Recently there has been active research on mobile sink nodes, but the re-search of an environment where both fixed sink nodes and mobile sinks are present at the same time is rather scarce. This paper proposes a technique for context gathering by mobile devices with the sink functionality added through fixed sinks under a previously built, cluster based multi hop sensor network environment. To this end, clustering of mobile devices were done based on the fixed sinks of a previously built sensor network, and by using appropriate fixed sinks, context gathering was made possible. By mathematical comparison with TTDD routing protocol, which was proposed for mobile sinks, it was conformed that performance increases in energy with the number of mobile sinks, and with the number of movements by mobile devices.

Adaptive relay node search scheme for reducing network fragmentation (네트워크 단절 개선을 위한 적응적 전달자 노드검색 기법)

  • Hong, Won-Kee;Byun, Jeong-Sik
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제14권3호
    • /
    • pp.50-57
    • /
    • 2009
  • We propose a network node search scheme to address the network fragmentation due to high node mobility in the VANET. VANET is very similar to MANET in that a multi-hop ad-hoc network is configured by wireless communication between vehicles without any network infrastructure. However, high speed mobility, high node density, and frequent topology change induce frequent network fragmentation so that overall network traffic can be increased. In this paper, new broadcasting protocol called an adaptive relay node search protocol is proposed to decrease the network fragmentation. It reduces the network fragmentation and network traffic by researching nodes outside the dangerous area only in case of network fragmentation. Simulation results show that the proposed protocol decreases network fragmentation by up to 39.9% and increase informed rate by up to 41.9% compared to the existing broadcasting protocol.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Design of Adaptive DCF algorithm for TCP Performance Enhancement in IEEE 802.11 based Mobile Ad-hoc Networks (IEEE 802.11 기반 이동 ad-hoc 망에서 TCP 성능 향상을 위한 적응적 DCF 알고리즘 설계)

  • Kim, Han-Jib;Lee, Gi-Ra;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제43권10호
    • /
    • pp.79-89
    • /
    • 2006
  • TCP is the most widely used transport protocol in Internet applications that guarantees a reliable data transfer. But, in the wireless multi-hop networks, TCP performance is degraded because it is designed for wired networks. The main reasons of TCP performance degradation are contention for wireless medium at the MAC layer, hidden terminal problem, exposed terminal problem, packet losses in the link layer, unfairness problem, reordering problem caused by path disconnection, bandwidth waste caused by exponential backoff of retransmission timer due to node's mobility and so on. Specially, in the mobile ad-hoc networks, discrepancy between a station's transmission range and interference range produces hidden terminal problem that decreases TCP performance greatly by limiting simultaneous transmission at a time. In this paper, we propose a new MAC algorithm for mobile ad-hoc networks to solve the problem that a node can not transmit and just increase CW by hidden terminal. In the IEEE 802.11 MAC DCF, a node increases CW exponentially when it fails to transmit, but the proposed algorithm, changes CW adaptively according to the reason of failure so we get a TCP performance enhancement. We show by ns-2 simulation that the proposed algorithm enhances the TCP performance by fairly distributing the transmission opportunity to the failed nodes by hidden terminal problems.

A Multistage Authentication Strategy for Reliable N-to-N Communication in CGSR based Mobile Ad Hoc Networks (CGSR 기반의 이동 애드 흑 네트워크에서 신뢰성 있는 통신을 위한 노드간 인증 기법)

  • Lee Hyewon K.;Mun Youngsong
    • Journal of KIISE:Information Networking
    • /
    • 제32권6호
    • /
    • pp.659-667
    • /
    • 2005
  • A Mobile Ad Hoc Network(MANET) is a multi hop wireless network with no prepared base stations or centralized administrations, where flocks of peer systems gather and compose a network. Each node operates as a normal end system in public networks. In addition to it, a MANET node is required to work as a router to forward traffic from a source or intermediate node to others. Each node operates as a normal end system in public networks, and further a MANET node work as a router to forward traffic from a source or intermediate node to the next node via routing path. Applications of MANET are extensively wide, such as battle field or any unwired place; however, these are exposed to critical problems related to network management, node's capability, and security because of frequent and dynamic changes in network topology, absence of centralized controls, restricted usage on network resources, and vulnerability oi mobile nodes which results from the special MANET's character, shared wireless media. These problems induce MANET to be weak from security attacks from eavesdropping to DoS. To guarantee secure authentication is the main part of security service In MANET because networks without secure authentication are exposed to exterior attacks. In this paper, a multistage authentication strategy based on CGSR is proposed to guarantee that only genuine and veritable nodes participate in communications. The proposed authentication model is composed of key manager, cluster head and common nodes. The cluster head is elected from secure nodes, and key manager is elected from cluster heads. The cluster head will verify other common nodes within its cluster range in MANET. Especially, ID of each node is used on communication, which allows digital signature and blocks non repudiation. For performance evaluation, attacks against node authentication are analyzed. Based on security parameters, strategies to resolve these attacks are drawn up.

Cluster-based Delay-adaptive Sensor Scheduling for Energy-saving in Wireless Sensor Networks (센서네트워크에서 클러스터기반의 에너지 효율형 센서 스케쥴링 연구)

  • Choi, Wook;Lee, Yong;Chung, Yoo-Jin
    • Journal of the Korea Society for Simulation
    • /
    • 제18권3호
    • /
    • pp.47-59
    • /
    • 2009
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we propose a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC). The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to the application-dependent and time-varying delay requirements. The TPC requests sensors to construct two types of links: direct and relay links. The direct links are used for control and forwarding time critical sensed data. On the other hand, the relay links are used only for data forwarding based on the user delay constraints, thus allowing the sensors to opportunistically use the most energy-saving links and forming a multi-hop path. Simulation results demonstrate that cluster-based delay-adaptive data gathering strategy (CD-DGS) saves a significant amount of energy for dense sensor networks by adapting to the user delay constraints.

The cancellation performance of loop-back signal in wireless USN multihop relay node (무선 USN 멀티홉 중계 노드에서 루프백 신호의 제거 성능)

  • Lim, Seung-Gag;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제9권4호
    • /
    • pp.17-24
    • /
    • 2009
  • This paper deals with the cancellation performance of loop back interference signal in the case of multihop relay of 16-QAM received signal at the USN radio network. For this, it is necessary to the exchange of information with long distance located station by means of the relay function between the node in the USN environment. In the relay node, the loop-back interference signal which the retransmitting signal is feedback to the receiver side due to the antenna of transmitter and receiver are co-used or very colsely located or using the nonlinear device. Due to this signal, the performance of USN system are degraded which are using the limited resource of frequency and power. For improve this, it is necessary to applying the adaptive signal processing algorithm in order to cancellating the unwanted loop-back interference signal at the frontend of receiver in relaying node, we can get the better system and multi hop performance. In the adaptive signal processing, we considered the 16-QAM signal which has a good spectral efficiency, firstly, than, the QR-Array RLS algorithm was used that has a fairly good convergence property and the solving the finite length problem in the H/W implementation. Finaly, we confirmed that the good elimination performanc was confirmed by computer simulation in the learing cuved and received signal constellation compared to the conventional RLS.

  • PDF