• Title/Summary/Keyword: Wireless Local Area Networks

Search Result 170, Processing Time 0.023 seconds

Research on the enhancement of throughput for traffic in WLAN (초고속 무선 랜에서 트래픽 간의 처리율 향상을 위한 연구)

  • Song, Byunjin;Lee, Seonhee
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.53-56
    • /
    • 2015
  • In this paper, we want provide improved services with faster transmission, IEEE 802.11n was standardized. A-MPDU (Aggregation MAC Protocol Data UNIT) is a vital function of the IEEE 802.11n standard, which was proposed to improve transmission rate by reducing frame transmission overhead. In this paper, we show the problems of TCP retransmission with A-MPDU and propose a solution utilizing the property of TCP cumulative ACK. If the transmission of an MPDU subframe fails, A-MPDU mechanism allows selective re-transmission of failed MPDU subframe in the MAC layer. In TCP traffic transmission, however, a failed MPDU transmission causes TCP Duplicate ACK, which causes unnecessary TCP re-transmission. Furthermore, congestion control of TCP causes reduction in throughput. By supressing unnecessary duplicate ACKs the proposed mechanism reduces the overhead in transmitting redundant TCP ACKs, and transmitting only a HS-ACK with the highest sequence number. By using the RACK mechanism, through the simulation results, it was conrmed that the RACK mechanism increases up to 20% compared the conventional A-MPDU, at the same time, it tightly assures the fairness among TCP flows.

Design of a DSSS MODEM Architecture for Wireless LAN (무선 LAN용 직접대역확산 방식 모뎀 아키텍쳐 설계)

  • Chang, Hyun-Man;Ryu, Su-Rim;Sunwoo, Myung-Hoon
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.18-26
    • /
    • 1999
  • This paper presents the architecture and design of a DSSS MODEM ASIC chip for wireless local area networks (WLAN). The implemented MODEM chip supports the DSSS physical layer specifications of the IEEE 802.11. The chip consits of a transmitter and a receiver which contain a CRC encoder/decoder, a differential encoder/decoder, a frequency offset compensator and a timing recovery circuit. The chip supports various data rates, i.e., 4,2 and 1Mbps and provides both DBPSK and DQPSK for data modulation. We have performed logic synthesis using the $SAMSUNG^{TM}$ $0.6{\mu}m$ gate array library and the implemented chip consists of 53,355 gates. The MODEM chip operates at 44MHz, the package type is 100-pin QFP and the power consumption is 1.2watt at 44MHz. The implemented MODEM architecture shows lower BER compared with the Harris HSP3824.

  • PDF

Annular ring slot antenna with a variable circular polarized mode characteristic (가변 원형편파 모드 특성을 갖는 원형 링 슬롯 안테나)

  • Kim, Yong-Jin;Kim, Jung-Han;Lee, Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.78-84
    • /
    • 2008
  • In this paper, the reconfigurable annular ring slot antenna with circular polarization diversity is proposed for SDMB(Satellite Digital Multimedia Broadcasting) system. The proposed antenna consists of a ring slot with four tuning stubs. Four PIN diodes are attached to switch circular polarization diversity. By switching the diodes ON or OFF, the proposed antenna can be operated either RHCP mode or LHCP mode. The experimental result shows that the proposed antenna has an impedance bandwidth(VSWR${\leq}$2) of 570MHz(2.47-3.04GHz) at LHCP mode, an impedance bandwidth (VSWR${\leq}$2) of 560MHz(2.45-3.01GHz) at RHCP mode, a maximum gai of 3.1dBi at RHCP mode, 4.76dBi at LHCP mode. The 3dB CP bandwidth of about 100MHz at both RHCP and LHCP mode is achieved at the center frequency 2.63GHz. The proposed antenna is suitable for application such as mobile satellite communications, WLAN(Wireless Local Area Networks), and broadband wireless communication systems.

An Efficient Dynamic Paging Scheme in Mobile IPv6 (Mobile IPv6에서 효율적인 동적 페이징 방식)

  • Joe In-Whee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6B
    • /
    • pp.544-550
    • /
    • 2006
  • Next-generation wireless/mobile networks are envisioned to have an IP-based infrastructure. One of the research challenges for next-generation all IP-based networks is the design of intelligent mobility management technologies that have a seamless mobility and minimal signaling overhead. Recently, HMIPv6 was proposed by the IETF for efficient mobility management. HMIPv6 reduces the amount of signaling and improves the performance of MIPv6 in terms of handover latency. However the MAP can be a single point of performance bottleneck when there are a lot of local movements. HMIPv6 can cause signaling overhead due to the unnecessary location update of idle mobile nodes. Therefore, in this paper, we propose the dynamic paging Mobile IPv6 that reduces the signaling cost of the unnecessary location updates using IP paging and organizes dynamically optimal MAP area according to user's mobility and traffic. We show performance results that are obtained from the average total location update cost and packet delivery cost.

Asymmetric RTS/CTS for Exposed Node Reduction in IEEE 802.11 Ad Hoc Networks

  • Matoba, Akihisa;Hanada, Masaki;Kanemitsu, Hidehiro;Kim, Moo Wan
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.107-118
    • /
    • 2014
  • One interesting problem regarding wireless local area network (WLAN) ad-hoc networks is the effective mitigation of hidden nodes. The WLAN standard IEEE 802.11 provides request to send/clear to send (RTS/CTS) as mitigation for the hidden node problem; however, this causes the exposed node problem. The first 802.11 standard provided only two transmission rates, 1 and 2 Mbps, and control frames, such as RTS/CTS assumed to be sent at 1 Mbps. The 802.11 standard has been enhanced several times since then and now it supports multi-rate transmission up to 65 Mbps in the currently popular 802.11n (20 MHz channel, single stream with long guard interval). As a result, the difference in transmission rates and coverages between the data frame and control frame can be very large. However adjusting the RTS/CTS transmission rate to optimize network throughput has not been well investigated. In this paper, we propose a method to decrease the number of exposed nodes by increasing the RTS transmission rate to decrease RTS coverage. Our proposed method, Asymmetric Range by Multi-Rate Control (ARMRC), can decrease or even completely eliminate exposed nodes and improve the entire network throughput. Experimental results by simulation show that the network throughput in the proposed method is higher by 20% to 50% under certain conditions, and the proposed method is found to be effective in equalizing dispersion of throughput among nodes.

A MAC Parameter Optimization Scheme for IEEE 802.11e-based Multimedia Networks (IEEE 802.11e 기반 멀티미디어 네트워크를 위한 MAC 매개 변수 최적화 방법)

  • Sung, Min-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.455-461
    • /
    • 2008
  • Enhanced Distributed Channel Access (EDCA) is a channel access scheme adopted by the IEEE 802.11e draft standard for QoS-enabled wireless local area networks. It classifies traffic into separate Access Categories (ACs) and achieves service differentiation by allowing each AC to have its own values of channel access parameters. This paper proposes a scheme to dynamically adapt the EDCA parameters to traffic environment so that they both maximize the throughput of non real-time traffics and meet the delay and throughput constraints of real-time traffics. For this purpose, we develop a design algorithm for efficient exploration of the EDCA parameter space. Using the algorithm, we derive a Pareto curve fur delay-throughput trade-off in each anticipated traffic environment. The Pareto database can then be used to optimally adjust the parameter according to the traffic environment and administrative policies. Simulation results show that compared with the default parameter configuration, the proposed scheme is better for delay, throughput guarantee and can improve the throughput of non real-time traffics by 12% on average.

A Study on Efficient Numbering Plan of Communication Networks (통신망의 효율적인 번호배분에 관한 연구)

  • 김석태;최영상
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.485-494
    • /
    • 1998
  • Communication network numbers are used in classifying each kind of network, identifying the communication companies and choosing services that are supplied by the companies. In the present, a new numbering system is needed to distinguish a new additional communication network. However the present numbering system of domestic communication network has some problems such as exhaustion of network number, excessive local numbers, and so forth So, in this thesis we call the wire and the wireless telephone network, the pager network and the personal number as communication networks, and consider the present condition and problems of our country, Korea, and foreign countries. Then we propose the efficient numbering plan. Firstly, the present 10 numbering systems that are distributed, such as communication networking number $\ulcorner$01X$\lrcorner$ are diminished into 5 communication network numbers that have same quality. Secondly, subscriber numbers are united to 8 digit and 144 area codes are made into widened 5 area codes. Thirdly, the personal numbering services are cross-distributed by century. And we examine the technical convening plan and the legal converting plan and investigate expecting efficiency of proposed numbering system. If this numbering plan is executed, subscriber's number on communication networks are unified at 8 digits, 5 reserve numbers are secured in exhausted communication network number of $\ulcorner$01X$\lrcorner$, and they can distribute subscriber numbers over twice as much. In addition, number acceptability is enlarged from 237,600 thousands to 400,000 thousands. Personal number can be classified at not only century but also a decade. Accordingly, acceptable numbers are increased two folds enough to provide unification and population increase. We were able to confirm all the efficiencies.

  • PDF

A study of Vertical Handover between LTE and Wireless LAN Systems using Adaptive Fuzzy Logic Control and Policy based Multiple Criteria Decision Making Method (LTE/WLAN 이종망 환경에서 퍼지제어와 정책적 다기준 의사결정법을 이용한 적응적 VHO 방안 연구)

  • Lee, In-Hwan;Kim, Tae-Sub;Cho, Sung-Ho
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.271-280
    • /
    • 2010
  • For the next generation mobile communication system, diverse wireless network techniques such as beyond 3G LTE, WiMAX/WiBro, and next generation WLAN etc. are proceeding to the form integrated into the All-IP core network. According to this development, Beyond 3G integrated into heterogeneous wireless access technologies must support the vertical handover and network to be used of several radio networks. However, unified management of each network is demanded since it is individually serviced. Therefore, in order to solve this problem this study is introducing the theory of Common Radio Resource Management (CRRM) based on Generic Link Layer (GLL). This study designs the structure and functions to support the vertical handover and propose the vertical handover algorithm of which policy-based and MCDM are composed between LTE and WLAN systems using GLL. Finally, simulation results are presented to show the improved performance over the data throughput, handover success rate, the system service cost and handover attempt number.

Joint Uplink/Downlink Co-Opportunistic Scheduling Technique in WLANs (무선랜 환경에서 협동 상향/하향 링크 기회적 스케줄링 기법)

  • Yoo, Joon;Kim, Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.514-524
    • /
    • 2007
  • Recent advances in the speed of multi-rate wireless local area networks (WLANs) and the proliferation of WLAN devices have made rate adaptive, opportunistic scheduling critical for throughput optimization. As WLAN traffic evolves to be more symmetric due to the emerging new applications such as VoWLAN, collaborative download, and peer-to-peer file sharing, opportunistic scheduling at the downlink becomes insufficient for optimized utilization of the single shared wireless channel. However, opportunistic scheduling on the uplink of a WLAN is challenging because wireless channel condition is dynamic and asymmetric. Each transmitting client has to probe the access point to maintain the updated channel conditions at the access point. Moreover, the scheduling decisions must be coordinated at all clients for consistency. This paper presents JUDS, a joint uplink/downlink opportunistic scheduling for WLANs. Through synergistic integration of both the uplink and the downlink scheduling, JUDS maximizes channel diversity at significantly reduced scheduling overhead. It also enforces fair channel sharing between the downlink and uplink traffic. Through extensive QualNet simulations, we show that JUDS improves the overall throughput by up to 127% and achieves close-to-perfect fairness between uplink and downlink traffic.

A Mobile P2P Message Platform Enabling the Energy-Efficient Handover between Heterogeneous Networks (이종 네트워크 간 에너지 효율적인 핸드오버를 지원하는 모바일 P2P 메시지 플랫폼)

  • Kim, Tae-Yong;Kang, Kyung-Ran;Cho, Young-Jong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.10
    • /
    • pp.724-739
    • /
    • 2009
  • This paper suggests the energy-efficient message delivery scheme and the software platform which exploits the multiple network interfaces of the mobile terminals and GPS in the current mobile devices. The mobile terminals determine the delivery method among 'direct', 'indirect', and 'WAN' based on the position information of itself and other terminals. 'Direct' method sends a message directly to the target terminal using local RAT. 'Indirect' method extends the service area by exploiting intermediate terminals as relay node. If the target terminal is too far to reach through 'direct' or 'indirect' method, the message is sent using wireless WAN technology. Our proposed scheme exploits the position information and, thus, power consumption is drastically reduced in determining handover time and direction. Network simulation results show that our proposed delivery scheme improves the message transfer efficiency and the handover detection latency. We implemented a message platform in a smart phone realizing the proposed delivery scheme. We compared our platform with other typical message platforms from energy efficiency aspect by observing the real power consumption and applying the mathematical modeling. The comparison results show that our platform requires significantly less power.