• Title/Summary/Keyword: Wireless IP Networks

Search Result 289, Processing Time 0.025 seconds

The Development of Distribution Automation System Using TCP/IP (TCP/IP를 이용한 배전자동화시스템 구현)

  • Kim, Myong-Soo;Hyun, Duck-Hwa;Cho, Seon-Ku;Kim, Jae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2452-2454
    • /
    • 2001
  • KEPRI, the research institute for KEPCO, has started developing a DAS using wireless communication networks since 1999. The wireless networks adopted Radio Link Protocol (RLP) of Personal Communication Service (PCS) as communication protocol. It is the first time that PCS is applied to data networks for DAS. The communication protocol, RLP, makes the DAS networks simple and economically affordable when they are installed at widely dispersed small cities. But, RLP has problem when it send unsolicited message. This paper describes the implementing method of a wireless network using RLP and TCP/IP Network to cope with unsolicited message problem.

  • PDF

LMS-Wiener Model for Resources Prediction of Handoff Calls in Multimedia Wireless IP Networks (멀티미디어 무선 IP 망에서 핸드오프 호의 자원예측을 위한 LMS-위너 모델)

  • Lee, Jin-Yi;Lee, Kwang-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.26-33
    • /
    • 2005
  • Exact prediction of resource demands for future calls enhances the efficiency of the limited resource utilization in resource reservation methods for potential calls in wireless IP networks. In this paper, we propose a LMS-Wiener resource(bandwidth) prediction for future handoff calls, and then an the proposed method is compared with an existing Wiener-based method in terms of prediction error through our simulations. In our simulations, we assume that handoff call arrivals follow a non-Poisson process and each handoff call has an non-exponentially distributed channel holdingtime in the cell, considering that handoff call arrival pattern is not Poisson distribution but non-Poisson for long periods of time in wireless picocellular IP networks. Simulation results show that the prediction error in the proposed method converges to the lower value while in an existing method increase as time is passed. Therefore we may conclude that the proposed method improves the efficiency of resource utilization by more exactly predicting resource demands for future handoff calls than an existing method.

Performance Analysis of Cross-Layer Handoff Scheme in IP-Based Next-Generation Wireless Networks (IP기반 차세대 무선 네트워크에서의 교차계층 핸드오프 기법의 성능 분석)

  • Lee, JaeSuk;Jeong, Jongpil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.6
    • /
    • pp.454-472
    • /
    • 2013
  • The development of wireless network technology and the increasing use of wireless networks to mobile users with a variety of wireless network systems has arisen. Wireless sensor networks, they can be nested together, and the need to switch between the network, depending on your needs. Next Generation Wireless Networks(NGWN) gives the mobile user a wide coverage and optimized service etc. Previous hand off management protocol is not enough to secure support of the NGWN application program. Cross-layer Handoff(CLH) protocol technique has been developed to support between and inside networks of handoff management of NGWN. CLH supports mobility management in a wireless network environment and also utilizes mobility speed and handoff signaling delay information to improve the handoff performance ability. For the analysis of handoff performance ability, we analyzed sensitivity of link layer and network layer, therefore, CLH technique is suggested based on this analysis.

Effective IPv6 Address Allocation Mechanism in All IP Wireless Networks (차세대 이동통신망에서 효율전인 IPv6 주소할당 방안)

  • 정현철;민상원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2B
    • /
    • pp.240-249
    • /
    • 2004
  • For the effective IP-based service implementation in the wireless network environment, involvement of IP-related technologies in wireless networks is inevitable and globally unique IPv6 address allocation to the mobile node has become an important issue. In the 3GPP's address allocation mechanism, IPv6 address allocation procedure is performed by the GGSN, which is normally located far from the mobile nodes. This causes IPv6 address allocation time delay and traffics to be longer and increased in the core network, respectively. In this paper, we propose a new IPv6 address allocation mechanism that is performed by Node B located in RAN. The proposed IPv6 address allocation mechanism can provide IPv6 addresses to mobile nodes within a more reduced time than existing 3GPP's IPv6 address allocation mechanism, and co-operates with existing mechanism as an overlay model to improve reliability of wireless networks. And, for implementation of the proposed address allocation mechanism, it needs not to change the structure of current wireless networks except for the some functional addendum of Node B.

A Hierarchical Mobile W Architecture using a Virtual Router Layer (가상 라우터 계층을 이용한 Hierarchical Mobile IP 구조)

  • Shin Bok-Deok;Ha Kyung-Jae
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.603-614
    • /
    • 2005
  • The wireless LAN environment using Mobile IP is constructed and managed to be connected with Ethernet based wired networks. However, there have been many problems with wireless networks using Mobile IP. Some important facts on network performance have not been considered when introducing wireless LAN by Mobile IP to wired networks. In this paper, we suggest schemes which can solve problems on Handover latency caused by the asymmetrical connectivity of the Access Router at applying the HMIPv6 and on binding updates due to the MN frequent movement. Our proposed schemes can reduce network latency by using the HMIPv6 architecture with a virtual router layer, and reduce communication overhead by interchanging information of the MN movement between routers. Our schemes are expected to assist in constructing a more real and effective wireless LAN environment based on the HMIPv6 and FMIP.

A Framework for Multiple Wireless Services in Heterogeneous Wireless Networks (중첩된 이기종 무선망에서의 다중 무선 서비스 프레임워크)

  • Shin, Choong-Yong;Cho, Jin-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.85-94
    • /
    • 2008
  • As a variety of wireless network services, such as WLAN, WiBro, cdma2000, and HSDPA, are provided and the range of users' choices for the wireless services are broaden, MCoA (Multiple Car-of Address) concepts that enable users to use wireless interfaces simultaneously have been presented in IETF MONAMI6 WG. Through this scheme, users can access several networks simultaneously by using multiple wireless interfaces. Such various wireless connection technologies continue to advance as they are connected and integrated to All-IP-based core network, and at the same time, heterogeneous networks are being managed overlaid according to the coverage of the wireless connection technologies. Under such circumstances, needs for an integrated architecture have arisen, and thus Wireless service framework is required that effectively manages heterogeneous networks which coexist with next generation's networks for 4G. In this paper, a wireless service framework is suggested in the consideration of current wireless service environment, and the framework covers the schemes to minimize the packet loss caused by handover, and also modified Multiple Care-of Address that helps to select most effective network by considering characteristics of various interfaces as well as users' preferences.

  • PDF

An IPv6 based Fast Handover Deployment Scheme for WiBro Networks (광대역 무선 인터넷 망에서 IPv6 기반의 고속 핸드오버 도입을 위한 방안)

  • Shim, Min-Sik;Kim, Hwa-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1101-1112
    • /
    • 2006
  • With the recent growth in demand for high-data rate multimedia services in the wireless environments, the Mobile Broadband Wireless Access (MBWA) technologies, such as WiBro (Wireless Broadband internet) system, are gradually coming into the spotlight. Unlike the conventional mobile communication networks based on cellular system, the WiBro system basically consists of IP based backbone networks that will be ultimately deployed by Ipv6 (IP version six) based backbone networks according to the All-IP trend for the network evolution. In such wireless mobile environments, it is needed to support the mobility management protocol on network layer as well as physical layer and Medium Access Control (MAC) layer in WiBro system. Accordingly, in this paper, we propose a fast handover scheme for improving the handover performance in IPv6 based WiBro system and show that the proposed scheme achieves loss-free and low handover latency during inter-subnet movement of the mobile stations through the simulation.

Analytical Approach of Multicasting-supported Inter-Domain Mobility Management in Sensor-based Fast Proxy Mobile IPv6 Networks

  • Jang, Ha-Na;Jeong, Jong-Pil
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • IP-based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health care, home automation, environmental monitoring, industrial control, vehicle telematics, and agricultural monitoring. In all these applications, a fundamental issue is the mobility in the sensor network, particularly with regards to energy efficiency. Because of the energy inefficiency of network-based mobility management protocols, they can be supported via IP-WSNs. In this paper, we propose a network-based mobility-supported IP-WSN protocol called mSFP, or the mSFP: "Multicasting-supported Inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks". Based on [8,20], we present its network architecture and evaluate its performance by considering the signaling and mobility cost. Our analysis shows that the proposed scheme reduces the signaling cost, total cost, and mobility cost. With respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 7% and the total cost by 3%. With respect to the number of hops, the proposed scheme reduces the signaling cost by 6.9%, the total cost by 2.5%, and the mobility cost by 1.5%. With respect to the number of IP-WSN nodes, the proposed scheme reduces the mobility cost by 1.6%.

A Case Study of a Resource Reservation Protocol in IP Based Wireless Access Networks for ITS Service

  • Jung Kwang Mo;Jung Hyun Chul;Min Sang Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.107-115
    • /
    • 2005
  • For effective IP based service implementation on the wireless network environments, wireless network including the ITS network have to support QoS guaranteed protocol such as a RSVP. RSVP is a resource reservation protocol for Internet environment, and its scalability makes easy to implement RSVP over the various IP transport technologies. But for the If based ITS wireless network environment, RSVP is not suitable, since by its path setup procedure characteristic. In the wireless access network for ITS service, when a mobile node moves to other domain it must perform registration procedure. But the registration procedure is time consuming steps, so if a RSVP session was already established in the previous domain, the RSYP session may be disconnected and the time to re establish a new RSVP session is long enough to cause serious packet loss. In this paper, we propose a pre-path reservation mechanism for applying the RSVP in wireless access networks for ITS. In the pre-path reservation mechanism, the resource reservation procedure occurred during a mobile node's handoff time. An access point in wireless access network performs this procedure when the mobile node attempts handoff The access point executes pre-path reservation procedure as a proxy, since the mobile node does not have IP address until the address allocation procedure is finished in a new domain.

  • PDF

Gateway Strategies for VoIP Traffic over Wireless Multihop Networks

  • Kim, Kyung-Tae;Niculescu, Dragos;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.24-51
    • /
    • 2011
  • When supporting both voice and TCP in a wireless multihop network, there are two conflicting goals: to protect the VoIP traffic, and to completely utilize the remaining capacity for TCP. We investigate the interaction between these two popular categories of traffic and find that conventional solution approaches, such as enhanced TCP variants, priority queues, bandwidth limitation, and traffic shaping do not always achieve the goals. TCP and VoIP traffic do not easily coexist because of TCP aggressiveness and data burstiness, and the (self-) interference nature of multihop traffic. We found that enhanced TCP variants fail to coexist with VoIP in the wireless multihop scenarios. Surprisingly, even priority schemes, including those built into the MAC such as RTS/CTS or 802.11e generally cannot protect voice, as they do not account for the interference outside communication range. We present VAGP (Voice Adaptive Gateway Pacer) - an adaptive bandwidth control algorithm at the access gateway that dynamically paces wired-to-wireless TCP data flows based on VoIP traffic status. VAGP continuously monitors the quality of VoIP flows at the gateway and controls the bandwidth used by TCP flows before entering the wireless multihop. To also maintain utilization and TCP performance, VAGP employs TCP specific mechanisms that suppress certain retransmissions across the wireless multihop. Compared to previous proposals for improving TCP over wireless multihop, we show that VAGP retains the end-to-end semantics of TCP, does not require modifications of endpoints, and works in a variety of conditions: different TCP variants, multiple flows, and internet delays, different patterns of interference, different multihop topologies, and different traffic patterns.