• Title/Summary/Keyword: Wireless Device

Search Result 1,399, Processing Time 0.025 seconds

Implementation of Bistatic Backscatter Wireless Communication System Using Ambient Wi-Fi Signals

  • Kim, Young-Han;Ahn, Hyun-Seok;Yoon, Changseok;Lim, Yongseok;Lim, Seung-ok;Yoon, Myung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1250-1264
    • /
    • 2017
  • This paper presents the architecture design, implement, experimental validation of a bistatic backscatter wireless communication system in Wi-Fi network. The operating principle is to communicate a tag's data by detecting the power level of the power modulated Wi-Fi packets to be reflected or absorbed by backscatter tag, in interconnecting with Wi-Fi device and Wi-Fi AP. This system is able to provide the identification and sensor data of tag on the internet connectivity without requiring extra device for reading data, because this uses an existing Wi-Fi AP infrastructure. The backscatter tag consists of Wi-Fi energy harvesting part and a backscatter transmitter/a power-detecting receiver part. This tag can operate by harvesting and generating energy from Wi-Fi signal power. Wi-Fi device decodes information of the tag data by recognizing the power level of the backscattered Wi-Fi packets. Wi-Fi device receives the backscattered Wi-Fi packets and generates the tag's data pattern in the time-series of channel state information (CSI) values. We believe that this system can be achieved wireless connectivity for ultra- low-power IoT and wearable device.

Realization of An Outdoor Augmented Reality System using GPS Tracking Method (GPS 트래킹 방식을 이용한 옥외용 증강현실 시스템 구현)

  • Choi, Tae-Jong;Kim, Jung-Kuk;Huh, Woong;Jang, Byun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.5
    • /
    • pp.45-55
    • /
    • 2002
  • In this paper, we describe an outdoor augmented reality system using GPS tracking for position and attitude information. The system consist of a remote mobile operation unit and a ground operation unit. The remote mobile operation unit includes a real-time image acquiring device, a GPS tracking device, and a wireless data transceiver; the ground operation unit includes a wireless transceiver, a virtual image generating device, and an image superimposing device. The GPS tracking device for measurement of position and attitude of the remote mobile operation unit was designed by TANS Vector and RT-20 for DGPS. The wireless data transceiver was for data transmission between the remote mobile operation unit and the ground operation unit. After the remote mobile operation unit was installed on a vehicle and a helicopter, the system was evaluated to verify its validity in actual applications. It was found that the implemented system could be used for obtaining real-time remote information such as construction simulation, tour guide, broadcasting, disaster observation, or military purpose.

Effective ToA-Based Indoor Localization Method Considering Accuracy in Wireless Sensor Networks (무선 센서 네트워크 상에서 정확도를 고려한 효과적인 도래시간 기반 무선실내측위방법)

  • Go, Seungryeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.640-651
    • /
    • 2016
  • We propose an effective ToA-based localization method considering accuracy in indoor environments. The purpose of the localization system is to estimate the coordinates of the geographic location of target device. In indoor environments, accurately estimating the location of a target device is not easy due to various errors. The accuracy of wireless localization is influenced by NLOS errors. ToA-based localization measures the location of a target device using the distances between a mobile device and three or more base stations. However, each of the NLOS errors along a distance estimated from a target device to a base station is different because of dissimilar obstacles. To accurately estimate the target's location, an optimized localization process is needed in indoor environments. In this paper, effective ToA-based localization method process is proposed for improving accuracy in wireless sensor networks. Performance evaluations are presented, and the experimental localization system results are proved through comparisons of various localization methods with the proposed methods.

A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting

  • Jung, Hyung-Jo;Kim, In-Ho;Koo, Jeong-Hoi
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.379-392
    • /
    • 2011
  • This paper presents a multi-functional system, consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) device, and its applications in stay cables. The proposed system is capable of offering multiple functions: (1) mitigating excessive vibrations of cables, (2) estimating cable tension, and (3) harvesting energy for wireless sensors used health monitoring of cable-stayed bridges. In the proposed system, the EMI device, consisting of permanent magnets and a solenoid coil, can converts vibration energy into electrical energy (i.e., induced emf); hence, it acts as an energy harvesting system. Moreover, the cable tension can be estimated by using the emf signals obtained from the EMI device. In addition, the MR damper, whose damping property is controlled by the harvested energy from the EMI device, can effectively reduce excessive cable vibrations. In this study, the multi-functionality of the proposed system is experimentally evaluated by conducting a shaking table test as well as a full-scale stay cable in a laboratory setting. In the shaking table experiment, the energy harvesting capability of the EMI device for wireless sensor nodes is investigated. The performance on the cable tension estimation and the vibration mitigation are evaluated using the full-scale cable test setup. The test results show that the proposed system can sufficiently generate and store the electricity for operating a wireless sensor node twice per day, significantly alleviate vibration of a stay cable (by providing about 20% larger damping compared to the passive optimal case), and estimate the cable tension accurately within a 2.5% error.

Service Delivery Agent System for Mobile Devices

  • Jeong, Seob-Yoon;Lee, Ki-Hyun;Geun, Sik-Jo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.198-201
    • /
    • 2001
  • Recently the wireless-internet has been spreading extensively. People are spending a large part of their time gaining access to information using a mobile device. With the rapid growth of on-line Electronic Commerce, the use of mobile devices creates a new paradigm that provides users with location-independent real time service. Although this new paradigm does have some advantages, limited process speed, low bandwidth, the low battery capacity of mobile devices, and a high rate of wireless network errors causes many overhead expenses during service time with the server. In this paper, we suggest an autonomous service delivery system, which provides mobile agent capability to users that cannot maintain a connection. We have developed the system based on java mobile agent technology. Using this system, we can provide more effective service to users when the user is sending requirements for service through a mobile device that has limited resources. Furthermore we can manage the contact server dynamically when new services are added.

  • PDF

Study on the Energy Harvesting System Using Piezoelectric Direct Effect of Piezo Film (압전 필름의 압전정 효과를 이용한 에너지 저장 시스템에 관한 연구)

  • Choi, Bum-Kyoo;Lee, Woo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.78-85
    • /
    • 2008
  • Piezoelectric materials have been investigated as vibration energy converters to power wireless devices or MEMS devices due to the recent low power requirements of such devices and the advancement in miniaturization technology. Piezoelectric power generation can be an alternative to the traditional power source-battery because of the presence of facile vibration sources in our environment and the potential elimination of the maintenance required for large volume batteries. This paper represents the new power source which supplies energy device node. This system, called "energy harvesting system", with piezo materials scavenges extra energy such as vibration and acceleration from the environment. Then it converts the mechanical energy scavenged to electrical energy for powering device This paper explains the properties of piezo material through theoretical analysis and experiments The developed system provides a solution to overcome the critical problem of making up wireless device networks.

Development of Fully-Implantable Middle Ear Hearing Device with Differential Floating Mass Transducer : Current Status

  • Cho Jin-Ho;Park Il-Yong;Lee Sang-Heun
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.309-317
    • /
    • 2005
  • It is expected that fully-implantable middle-ear hearing devices (FIMEHDs) will soon be available with the advantages of complete concealment, easy surgical implantation, and low power operation to resolve the problems of semi-implantable middle-ear hearing devices (SIMEHDs) such as discomfort of wearing an external device and replacement of battery. Over the last 3 years, a Korean research team at Kyungpook National University has developed an FIMEHD called ACRHS-1 based on a differential floating mass transducer (DFMT). The main research focus was functional improvement, the establishment of easy surgical procedures for implantation, miniaturization, and a low-power operation. Accordingly, this paper reviews the overall system architecture, functions, and experimental results for ACRHS-1 and its related accessories, including a wireless battery charger and remote controller.

HandButton: Gesture Recognition of Transceiver-free Object by Using Wireless Networks

  • Zhang, Dian;Zheng, Weiling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.787-806
    • /
    • 2016
  • Traditional radio-based gesture recognition approaches usually require the target to carry a device (e.g., an EMG sensor or an accelerometer sensor). However, such requirement cannot be satisfied in many applications. For example, in smart home, users want to control the light on/off by some specific hand gesture, without finding and pressing the button especially in dark area. They will not carry any device in this scenario. To overcome this drawback, in this paper, we propose three algorithms able to recognize the target gesture (mainly the human hand gesture) without carrying any device, based on just Radio Signal Strength Indicator (RSSI). Our platform utilizes only 6 telosB sensor nodes with a very easy deployment. Experiment results show that the successful recognition radio can reach around 80% in our system.

A Study on Interactive Device Authentication Mechanism in Wireless Home (무선 홈네트워크 환경에서 양방향 기기 인증에 관한 연구)

  • Oh Sei-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.5
    • /
    • pp.9-13
    • /
    • 2006
  • Due to the miniaturization and the network supporting functions of home appliances, there is growing need for mobile environment home network system which provides flexibility, mobility and convenience to users. In this environment, a interactive authentication between mobile devices is important but the related works have no enough convenience to users. This paper proposes a interactive device authentication mechanism using Home Robot and also shows its design and implementation.

  • PDF

Design of Wireless Gateway of DeviceNet Network using IEEE 802.15.4 (IEEE 802.15.4를 이용한 디바이스넷 기반의 무선 게이트웨이 설계에 대한 연구)

  • Jung, Ji-Won;Lee, Jung-Il;Kim, Dong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.31-32
    • /
    • 2007
  • This paper is concerned with design methodology of gateway using IEEE 802.15.4 for DeviceNet. Wireless gateway is composed of DeviceNet master and IEEE 802.15.4 coordinator and node devices. The test results show the availability of implemented gateway.

  • PDF