• Title/Summary/Keyword: Wire temperature

Search Result 845, Processing Time 0.03 seconds

Causes of Burn and Emergency Care on the Spot for the Patients Admitted to Three Hospitals in Taegu (대구시내 종합병원에 입원한 화상환자의 화상원인과 현장에서 취한 응급처치)

  • Chu, Min;Park, Jung-Han
    • Journal of Preventive Medicine and Public Health
    • /
    • v.21 no.2 s.24
    • /
    • pp.238-244
    • /
    • 1988
  • This study was conducted to investigate the causes of burn and emergency cares taken on the spot for the burn patient. Study population included 161 burn patients admitted to 2 university hospitals and 1 general hospital in Taegu from November 1, 1987 to April 30, 1988. Patients or guardians were interviewed with a structured questionnare. Out of 161 burn patients 111(68.9%)were males and 50(31.1%) females. Preschool children of 1-4 years old accounted for 29.8% of the total patients. Burns of children under 15 years of age took place at home in 91.0%, while 48.3% of burns of adult (15 years and over)males occurred at the working place, and 68.0% of adult females occurred at the home. Out of total burns occurred at home 39.8% took place at kitchen/dining room and 24.1% in the room. The most common cause of burns in children was the boiling water or hot food (74.3%). In adults the common causes were electrical burn(22.4%), hot water or food(19.0%) and explosion(12.1%) for males, and hot water or food(32.0%) and explosion (20.0%) for females. Common emergency cares for the burn taken on the spot were undressing(64.6%), pouring Soju(liquor)(13.7%), and pouring cold water(5.0%). There were a few cases who applied ash, soy or salt. To prevent burn, it is recommended to remodel the traditional kitchen and coal-briquet hole, to strengthen the safety control of LP Gas and LN Gas supply, to educate the public for the handling method for such gases, to strengthen the occupational safety control, to improve the safety device for the electric wire and socket, and to limit the temperature of hot water at home and public baths.

  • PDF

Fabrication of Superconducting Joints between 61 Filaments of BSCCO 2223 Tapes (61심 BSCCO 2223 고온초전도 선재의 접합부 제조)

  • 김철진;박성창;유재무
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.137-144
    • /
    • 1998
  • High-temperature superconducting joints between 61 filaments of Bi-2223 tapes were fabricated by chem-ical corrosion and repeated thermomechanical process. The silver sheath of the superconducting tape was chemically removed using chemical etchant(NH4OH:H2O2=1:1) from one side of each tape without altering the form of lap joint. The joined region was formed by uniaxial pressing and a series of thermomechanical process and then subjected to properties measurement and microstructural analysis. The critical current(Ic) variation and I-V characteristics along the joint were mesured with several configuration of proble points. Ic value of the transition region of the joint inthe multifilament tape which limit the total current carring capacity of the superconducting tape was higher than that of monofilament tape. But the transition ex-ponent n-value of the multi-filament tape was lower than that of monofilament wire due to the interaction of the individual superconducting core of the multi-filament. The critical current through the joint area was improved by respeated press and reaction annealing treatment.

  • PDF

Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet (스월 충돌제트의 열전달 특성에 관한 실험적 연굴)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.

Heat Transfer and Flow Measurements on the Turbine Blade Surface (터빈 블레이드 표면과 선형익렬에서의 열전달 및 유동측정 연구)

  • Lee, Dae Hee;Sim, Jae Kyung;Park, Sung Bong;Lee, Jae Ho;Yoon, Soon Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.567-576
    • /
    • 1999
  • An experimental study has been conducted to investigate the effects of the free stream turbulence intensity and Reynolds number on the heat transfer and flow characteristics In the linear turbine cascade. Profiles of the time-averaged velocity, turbulence intensity, and Reynolds stress were measured in the turbine cascade passage. The static pressure and heat transfer distributions on the blade suction and pressure surfaces were also measured. The experiments were made for the Reynolds number based on the chord length, Rec = $2.2{\times}10^4$ to $1.1{\times}10^5$ and the free stream turbulence intensity, $FSTI_1$ = 0.6% to 9.1 %. The uniform heat flux boundary condition on the blade surface was created using the gold film Intrex and the surface temperature was measured by liquid crystal, while hot wire probes were used for the flow measurements. The results show that the free stream turbulence promotes the boundary layer development and delays the flow separation point on the suction surface. It was found that the boundary layer flows on the suction surface for all Reynolds numbers tested with $FSTI_1$ = 0.6% are laminar. It was also found that the heat transfer coefficient on the blade surface increases as the free stream turbulence intensity increases and the flow separation point moves downstream with an increasing Reynolds number. The results of skin friction coefficients are in good agreement with the heat transfer results in that for $FSTI_1{\geq}2.6%$, the turbulent boundary layer separation occurs.

Fabrication Thermal Responsive Tunable ZnO-stimuli Responsive Polymer Hybrid Nanostructure

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Hwang, Ki-Hwan;Ju, Dong-Woo;Jeon, So-Hyoun;Seo, Hyeon-Jin;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.429.2-429.2
    • /
    • 2014
  • ZnO nanowire is known as synthesizable and good mechanical properties. And, stimuli-responsive polymer is widely used in the application of tunable sensing device. So, we combined these characteristics to make precise tunable sensing devise. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using nanosphere template with various conditions via hydrothermal process. Also, pH-temperature dependant tuning ability of nanostructure was studied. The brief experimental scheme is as follow. First, Zno seed layer was coated on a si wafer ($20{\times}20mm$) by spin coater. And then $1.15{\mu}m$ sized close-packed PS nanospheres were formed on a cleaned si substrate by using gas-liquid-solid interfacial self-assembly method. After that, zinc oxide nanowires were synthesized using hydrothermal method. Before the wire growth, to specify the growth site, heat treatment was performed. Finally, NIPAM(N-Isopropylacrylamide) was coated onto as-fabricated nanostructure and irradiated by UV light to form the PNIPAM network. The morphology, structures and optical properties are investigated by FE-SEM(Field Emission Scanning electron Microscopy), XRD(X-ray diffraction), OM(Optical microscopy), and WCA(water contact angle).

  • PDF

Formation of Aluminum Hydroxides by Hydrolysis of Nano and Micro Al Powders (나노 및 마이크로 알루미늄의 가수분해에 의한 알루미늄 수산화물의 형성)

  • Oh Young Hwa;Lee Geunhee;Park Joong Hark;Rhee Chang Kyu;Kim Whung Whoe;Kim Do Hyang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2005
  • A formation of aluminum hydroxide by hydrolysis of nano and micro aluminum powder has been studied. The nano aluminum powder of 80 to 100 nm in diameter was fabricated by a pulsed wire evaporation (PWE) method. The micro powder was commercial product with more than $10\;{\mu}m$ in diameter. The hydroxide type and morphology depending on size of the aluminum powder were examined by several analyses such as XRD, TEM, and BET. The hydrolysis procedure of micro aluminum powder was different from that of nano aluminum powder. The nano aluminum powder after immersing in the water was transformed rapidly to a nano fibrous boehmite, accompanying with a remarkable temperature increase, and then further transformed slowly to a stable bayerite. However, the micro powder was changed to the stable bayerite slowly and directly. The formation of fibrous aluminum hydroxide from nano aluminum powder might be due to the fine cracks which were formed by hydrogen gas pressure on the surface hydroxide layer during hydrolysis. The nano powder with large specific surface area and small size reacted more actively and faster than the micro powder, and transformed to meta-stable hydroxide in relatively short reaction time. Therefore, the formation of fibrous boehmite is special characteristic of hydrolysis of nano aluminum powder.

Effect of Sigma Phase on Electrochemical Corrosion Characteristics of a Deposited Metal of ER2594 (ER2594 용착금속의 전기화학적 부식특성에 미치는 시그마상의 영향)

  • Jung, Byong-Ho;Kim, Si-Young;Seo, Gi-Jeong;Park, Joo-Young
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.75-81
    • /
    • 2015
  • A deposited metal specimen of ER2594 which is a super duplex steel welding wire used to investigate the effect of sigma(${\sigma}$) phase on electrochemical corrosion characteristics was prepared by gas tungsten arc welding. Aging treatment was conducted for the specimen at the temperature range of $700^{\circ}C$ to $900^{\circ}C$ for 5 to 300 minutes after annealing at $1050^{\circ}C$. Corrosion current density has decreased a little with an increase of aging time over 60 minutes at $700^{\circ}C$ to $900^{\circ}C$ and the uniform corrosion of deposited metal had more influence on the precipitation of ferrite than the precipitation of sigma phase. Therefore, the precipitation of sigma phase did not have much effect on the uniform corrosion. Pitting potential representing pitting corrosion has shown decreasing tendency as the precipitation of sigma phase increased. The degree of sensitization representing intergranular corrosion has shown increasing tendency as the precipitation of sigma phase increased at $700^{\circ}C$ to $800^{\circ}C$, while it has decreased at $900^{\circ}C$ for 60 to 300 minutes.

Purification of Si using Catalytic CVD

  • Jo, Chul-Gi;Lee, Kyeong-Seop;Song, Min-Wu;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.383-383
    • /
    • 2009
  • Silicon is commercially prepared by the reaction of high-purity silica with wood, charcoal, and coal, in an electric arc furnace using carbon electrodes, so called the metallurgical refining process, which produces ~98% pure Si (MG-Si). This can be further purified to solar grade silicon (SoG-Si) by various techniques. The most problematic impurity elements are B and P because of their high segregation coefficients. In this study, we explored the possibility of the using Cat-CVD for Si purification. The existing hot-wire CVD was modified to accommodate the catalyzer and the heating source. Mo boat (1.5 cm ${\times}$ 1 cm ${\times}$ 0.2 cm) was used as a heating source. Commercially available Si was purchased from Nilaco corporation (~99% pure). This powder was kept in the Mo-boat and heated to the purification temperature. In addition to the purification by cat-CVD technique, other methods such as thermal CVD, plasma enhanced CVD, vacuum annealing was also tried. It is found that the impurities are reduced to a great extent when treated with cat-CVD method.

  • PDF

Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Complex Sheet Fabricated by Roll Bonding Process (냉간압연접합법에 의해 제조된 AA1050/AA6061/AA1050 층상 복합판재의 미세조직 및 기계적 성질)

  • Ahn, Moo-Jong;You, Hyo-Sang;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.388-392
    • /
    • 2016
  • A cold roll-bonding process was applied to fabricate an AA1050/AA6061/AA1050 laminate complex sheet. Two AA1050 and one AA6061 sheets of 2 mm thickness, 40 mm width and 300 mm length were stacked up after surface treatment that included degreasing and wire brushing; material was then reduced to a thickness of 3 mm by one-pass cold rolling. The laminate sheet bonded by the rolling was further reduced to 1.2 mm in thickness by conventional rolling. The rolling was performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 210 mm. The rolling speed was 5.0 m/sec. The AA1050/AA6061/AA1050 laminate complex sheet fabricated by roll bonding was then hardened by natural aging T4) and artificial aging (T6) treatments. The microstructures of the as-roll bonded and the age hardened Al complex sheets were revealed by optical microscope observation; the mechanical properties were investigated by tensile testing and hardness testing. The strength of the as-roll bonded complex sheet was found to increase by 2.9 times compared to that value of the starting material. In addition, the hardness of the complex sheets increased with cold rolling for AA1050 and age-hardening treatment for AA6061, respectively. After heat treatment, both AA1050 and AA6061 showed typical recrystallization structures in which the grains were equiaxed; however, the grain size was smaller in AA6061 than in AA1050.

Optimum Condition of Pencil Drawing Paper Sensor(PDPS) for Temperature Detecting (온도 감지용 연필 선 종이 센서 최적화 연구)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Beak, Young-Min;Park, Ha-Sung;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • This study is about basic sensor experiment using PDPS by common pencil. 20 mm length, 3 mm thickness of line using 4B pencil is optimum condition. In order to be stable at point of contact between pencil line and copper wire, silver paste is needed. At using the PDPS, thermal detecting is able and thermal properties is inversely proportional to electrical resistance in the based on empirical formula. The sensor can be also used in the composites mold via the empirical formula by the relationship between thermal impact and electrical resistance. The change of electrical resistance relates the interfacial property of composites. It leads to expectation of properties.