• Title/Summary/Keyword: Wire structure

Search Result 655, Processing Time 0.031 seconds

Design of Low Power and High Speed NCL Gates (저전력 고속 NCL 비동기 게이트 설계)

  • Kim, Kyung Ki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.112-118
    • /
    • 2015
  • Conventional synchronous circuits cannot keep the circuit performance, and cannot even guarantee correct operations under the influence of PVT variations and aging effects in the nanometer regime. Therefore, in this paper, a DI (delay insensitive) design based NCL (Null Convention Logic) design methodology with a very simple design structure has been used to design digital systems, which is one of well-known asynchronous design methods robust to various variations and does not require any timing analysis. Because circuit-level structures of conventional NCL gates have weakness of low speed, high area overhead or high wire complexity, this paper proposes a new lNCL gates designed at the transistor level for high-speed, low area overhead, and low wire complexity. The proposed NCL gate libraries have been compared to the conventional NCL gates in terms of circuit delay, area and power consumption using a asynchronous multiplier implemented in dongbu 0.11um CMOS technology.

Flexural Capacity and CO2 Reduction Evaluation for Composite Beam with Weight Reducing Steel Wire-Integrated Void Deck Plate slab (자중저감 철선일체형 중공 데크플레이트 슬래브를 사용한 합성보의 휨내력 및 CO2 감소량 평가)

  • Kim, Sang-Seop;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.313-323
    • /
    • 2012
  • The purpose of this study is to evaluate $CO_2$ reduction and the flexural performance of steel wire-integrated void deck plate slabs that were inserted in omega-shaped steel plates to reduce concrete and welded H-section beams. The void deck plate slab can secure the structure, not only reducing the weight of the building but it is also eco-friendly. Therefore, this study evaluated the flexural performance of the composite beam by conducting a monotonic loading test with the use of actuators. It quantitatively evaluated the $CO_2$ emission based on earlier studies. The main test parameters are the concrete thickness of upper slabs, and the interrupted width of the omega-shaped steel plate. The result of the test showed that the welded H-section beam applied steel wire-integrated void deck plate slabs that were inserted into the omega-shaped steel plate declined in flexural performance on the composite beam after reducing concrete volume. Likewise, it is effective in reducing $CO_2$.

The Structural Analysis and Implications of Security Vulnerabilities In Mobile Srevice Network (모바일 서비스 네트워크의 구조적 분석과 보안 취약성)

  • Kim, Jang-Hwan
    • Convergence Security Journal
    • /
    • v.16 no.5
    • /
    • pp.49-55
    • /
    • 2016
  • Recently mobile service industry has grown very rapidly. In this paper, We investigated the changes in mobile service network as well as security vulnerabilities of network in future 5G mobile service network, too. Recently, there are rapid developement of information and communication and rapid growth of mobile e-business users. Therefore We try to solve security problem on the internet environment which charges from wire internet to wireless internet or wire/wireless internet. Since the wireless mobile environment is limited, researches such as small size, end-to-end and privacy security are performed by many people. In addition, there is a need of internetworking between mobile and IoT services. Wireless Application Protocol has weakness of leaking out information from Gateway which connected wire and wireless communication. As such, We investigate the structure of mobile service network in order to gain security vulnerabilities and insights in this paper.

Low Temperature Deposition of Microcrystalline Silicon Thin Films for Solar Cells (태양전지용 미세결정 실리콘 박막의 저온 증착)

  • Lee, J.C.;Yoo, J.S.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.;Park, I.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1555-1558
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon(${\mu}c$-Si:H) films prepared by hot wire chemical vapor deposition at substrate temperature below $300^{\circ}C$. The $SiH_4$ Concentration$[F(SiH_4)/F(SiH_4)+F(H_2)]$ is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}c$-Si:H films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}c$-S:H films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of $B_2H_6$ to $SiH_4$ gas. The solar cells with structure of Al/nip ${\mu}c$-Si:H/TCO/glass was fabricated with sing1e chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

EXAMINATION OF CALCULATION METHOD FOR THE FLEXURAL RIGIDITY OF CROP STALKS

  • Hirai, Yasumaru;Inoue, Eiji;Hashiguchi, Koichi;Kim, Young-Keun;Inaba, Shigeki;Tashiro, Katsumi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.287-294
    • /
    • 2000
  • Calculation of the flexural rigidity value (EI) is indispensable for prescription of deflection characteristics of crop stalks in harvesting□Conventionally□EI has been determined by either average EI of the whole stalk or average EI of each stems divided into node through the calculation method of cantilever with homogeneous section□However□deflection characteristics of crop stalks caused by mechanical operation such as combine harvester were not exactly presumed by these conventional EI through the experiment by authors. Further, actual EI of a stalk changes in company with a change of moisture contents as time passes during the experiment. Finally, efficient calculation method for determining EI is needed in order to improve these problems. In this study, mechanical model based on actual structure of the crop stalk with variety sectional area was proposed. This mechanical model is calculated by the theory of cantilever with continuous stages. Therefore, improvement of both calculating accuracy on EI and efficiency of measuring system was tried. At first, this calculation method was applied to piano wire of which EI was recognized in advance. As a result, EI calculated from this new method coincided approximately with piano wire's EI. Next, applying to crop stalks as same as piano wire, relationship between loads acting on crop stalks and deflection values calculated by EI using this new calculation method was exactly presumed in comparison with conventional method. Further, measuring time of deflection test was greatly reduced. Finally, new calculation method of EI will be available for estimating mechanical characteristics of so many kinds of crop stalks in harvesting operation. Further, in this study, new deflection test using image-processing apparatus by computer will be introduced.

  • PDF

Electrically Driven Quantum Dot/wire/well Hybrid Light-emitting Diodes via GaN Nano-sized Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Kim, Ryeo-Hwa;Go, Seok-Min;Gwon, Bong-Jun;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.47-47
    • /
    • 2011
  • There have been numerous efforts to enhance the efficiency of light-emitting diodes (LEDs) by using low dimensional structures such as quantum dots (QDs), wire (QWRs), and wells (QWs). We demonstrate QD/QWR/QW hybrid structured LEDs by using nano-scaled pyramid structures of GaN with ~260 nm height. Photoluminescence (PL) showed three multi-peak spectra centered at around 535 nm, 600 nm, 665 nm for QWs, QWRs, and QDs, respectively. The QD emission survived at room temperature due to carrier localization, whereas the QW emission diminished from 10 K to 300 K. We confirmed that hybrid LEDs had zero-, one-, and two-dimensional behavior from a temperature-dependent time-resolved PL study. The radiative lifetime of the QDs was nearly constant over the temperature, while that of the QWs increased with increasing temperature, due to low dimensional behavior. Cathodoluminescence revealed spatial distributions of InGaN QDs, QWRs, and QWs on the vertices, edges, and sidewalls, respectively. We investigated the blue-shifted electroluminescence with increasing current due to the band-filling effect. The hybrid LEDs provided broad-band spectra with high internal quantum efficiency, and color-tunability for visible light-emitting sources.

  • PDF

A Case Study on Stability Evaluation of Road Slope based on Geological Condition (지질조건에 따른 도로사면 안정검토에 대한 사례연구)

  • Park, Chal-Sook;Kim, Jae-Hong
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.577-587
    • /
    • 2007
  • The length of study area was about 450m, and it was shown the geological condition of distinguished change of rock by cutting slope. In order to establish a slope stability, we carried out an engineering geological investigations about rock constituent, rock structure and a direction of discontinuous plane. The study area was divided into six section considered by direction of cutting slope, height of slope and geological condition. Analysis of cutting slope stability was carried out with stereo-graphic projection method by DIPS program which was feasible of stability analysis with geometrical correlation for a direction of discontinuous plane and direction of cutting slope. From analysis of cutting slope stability considered by construction, stability and economical efficiency, the slope stability countermeasures such as a high tensile wire net, slope protection method and enhanced retaining wall were established and operated which minimized effect caused by lower end of road on a relaxation of huge rock.

A Study on the Manufacture of WC MMCs by In-situ Reaction Process(1);The Formation Mechanism of Interfacial Reaction Layer in Cast-bonded Cast iron/W wire and Its Structure (기지내 반응법에 의한 WC 복합재료의 제조에 관한 연구(1);주조접합된 주철/텅스텐 와이어의 계면반응층 생성기구와 조직특성)

  • Park, Heung-Il;Kim, Chang-Up;Huh, Bo-Young;Lee, Sung-Youl;Kim, Chang-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.272-282
    • /
    • 1995
  • Iron-based metal matrix composites have been recently investigated for the use of inexpensive abrasion resistance material. This paper carried out to investigate the in-situ reaction effects on the microstructural characteristics and the formation mechanism of tungsten carbides in a white cast iron matrix. The specimens of Fe-3.2%C-2.8%Si alloy cast-bonded with tungsten wire were cast in the metal mold and isothermally heat treated at $950^{\circ}C$ up to 48 hours. The typical microstructure of heat treated specimens showed the reaction layer of WC at the interface of tungsten wire and the carbon depletion zone between the WC layer and the matrix. During the formation of WC layer, if the carbon supply is insufficient due to the decarburization of matrix or the isolation of matrix by cast-bonded W wires, the reaction layer develops coarse hexagonal crystalline WC. From the microstructural investigation, it was found that the volume of WC layer and the carbon depletion zone increased linearly with the isothermal heat treating time. This results supported that the formation rate of WC in the white cast iron matrix is controlled by the interfacial reaction with a constant reaction rate.

  • PDF

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

Eutectic Temperature Effect on Au Thin Film for the Formation of Si Nanostructures by Hot Wire Chemical Vapor Deposition

  • Ji, Hyung Yong;Parida, Bhaskar;Park, Seungil;Kim, MyeongJun;Peck, Jong Hyeon;Kim, Keunjoo
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • We investigated the effects of Au eutectic reaction on Si thin film growth by hot wire chemical vapor deposition. Small SiC and Si nano-particles fabricated through a wet etching process were coated and biased at 50 V on micro-textured Si p-n junction solar cells. Au thin film of 10 nm and a Si thin film of 100 nm were then deposited by an electron beam evaporator and hot wire chemical vapor deposition, respectively. The Si and SiC nano-particles and the Au thin film were structurally embedded in Si thin films. However, the Au thin film grew and eventually protruded from the Si thin film in the form of Au silicide nano-balls. This is attributed to the low eutectic bonding temperature ($363^{\circ}C$) of Au with Si, and the process was performed with a substrate that was pre-heated at a temperature of $450^{\circ}C$ during HWCVD. The nano-balls and structures showed various formations depending on the deposited metals and Si surface. Furthermore, the samples of Au nano-balls showed low reflectance due to surface plasmon and quantum confinement effects in a spectra range of short wavelength spectra range.