• Title/Summary/Keyword: Wire soldering

Search Result 28, Processing Time 0.032 seconds

A Study on Growth of Intermetallic Compounds Layer of Photovoltaic Module Interconnected by Multi-wires under Damp-heat Conditions (고온고습시험에 의한 멀티 와이어 PV 모듈의 금속 간 화합물 층의 성장에 관한 연구)

  • Moon, Ji Yeon;Cho, Seong Hyeon;Son, Hyoung Jin;Jun, Da Yeong;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.8 no.4
    • /
    • pp.124-128
    • /
    • 2020
  • Output power of photovoltaic (PV) modules installed outdoors decreases every year due to environmental conditions such as temperature, humidity, and ultraviolet irradiations. In order to promote the installation of PV modules, the reliability must be guaranteed. One of the important factors affecting reliability is intermetallic compounds (IMC) layer formed in ribbon solder joint. For this reason, various studies on soldering properties between the ribbon and cell have been performed to solve the reliability deterioration caused by excessive growth of the IMC layer. However, the IMC layer of the PV module interconnected by multi-wires has been studied less than using the ribbon. It is necessary to study soldering characteristics of the multi-wire module for improvement of its reliability. In this study, we analyzed the growth of IMC layer of the PV module with multi-wire and the degradation of output power through damp-heat test. The fabricated modules were exposed to damp-heat conditions (85 ºC and 85 % relative humidity) for 1000 hours and the output powers of the modules before and after the damp-heat test were measured. Then, the process of dissolving ethylene vinyl acetate (EVA) as an encapsulant of the modules was performed to observe the IMC layer. The growth of IMC layer was evaluated using OM and FE-SEM for cross-sectional analysis and EDS for elemental mapping. Based on these results, we investigated the correlation between the IMC layer and output power of modules.

Fire Cause Analysis of Local Heating on Carbon Type Hot Wire Electric Pad (카본열선을 사용하는 전기장판의 국부가열에 의한 화재원인 분석)

  • Song, Jae-Yong;Kim, Jin-Pyo;Nam, Jung-Woo;Sa, Seung-Hun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.104-108
    • /
    • 2010
  • This paper describes electrical fire on electric pad using carbon type hot wires. A carbon type hot wires electric pad is virtually impossible to connect hot wire as a method of electrical welding or soldering. In order to connect between hot wires, that has to splice carbon type material connector. If junction of hot wires was occurrence of poor connection on electric pad, it increase contact resistance on this junction point. With increasing contact resistance, junction of hot wires on electric pad generates local heating and finally leads to electrical fire. In this paper, we analyzed shape of damage in hot wires caused by electrical local heating and investigated fire cause on electric pad using by carbon type hot wires.

A Study on Lamination Property of Superconducting Coated Conductor

  • Kim, T.H.;Oh, S.S.;Ha, D.W.;Kim, H.S.;Ko, R.K.;Song, K.J.;Ha, H.S.;Yang, J.S.;Park, Y.M.;Oh, J.K.;Jung, K.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.161-162
    • /
    • 2005
  • 2G HTS coated conductor wire consists of textured substrate, buffer layer, superconduct layer, Ag cap layer, stabilizer. For practical application filed, coated conductor have mechanical and electrical stability and environment protection properties. This property Cu and stainless steel strip is laminated to Ag cap layer as stabilizer materials. Lamination process join stabilizer material strip and Ag cap layer with soldering method. we have laminated HTS with continuous dipping soldering process different stabilizer Cu and stainless steel strip and changed lamination process condition. The effect of lamination stabilizer and process condition has been investigated mechanical and electrical properties.

  • PDF

Properties of the 18K Red Gold Solder Alloys with Indium Contents (18K 레드 골드 정함량 솔더의 In 첨가에 따른 물성변화)

  • Song, Jeongho;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2018
  • The properties of 18 K red gold solder alloys were investigated by changing the content of In up to 10.0 wt% in order to replace the hazardous Cd element. Cupellation and energy dispersive X-ray spectroscopy (EDS) were used to check the composition of each alloy, and FE-SEM and UV-VIS-NIR-Colormeter were employed for microstructure and color characterization. The melting temperature, hardness, and wetting angle of the samples were determined by TGA-DTA, the Vickers hardness tester, and the Wetting angle tester. The cupellation result confirmed that all the samples had 18K above 75.0wt%-Au. EDS results showed that Cu and In elements were alloyed with the intended composition without segregation. The microstructure results showed that the amount of In increased, and the grain size became smaller. The color analysis revealed that the proposed solders up to 10.0 wt% In showed a color similar to the reference 18 K substrate like the 10.0 wt% Cd solder with a color difference of less than 7.50. TGA-DTA results confirmed that when more than 5.0 wt% of In was added, the melting temperature decreased enough for the soldering process. The Vickers hardness result revealed that more than 5.0 wt% In solder alloys had greater hardness than 10.0 wt% Cd solder, which suggested that it was more favorable in making a wire type solder. Moreover, all the In solders showed a lower wetting angle than the 10.0 wt% Cd solder. Our results suggested that the In alloyed 18 K red gold solders might replace the conventional 10.0 wt% Cd solder with appropriate properties for red gold jewelry soldering.

Heat Dissipation Analysis of 12kV Diode by the Packaging Structure (12kV급 다이오드의 패키징 구조에 따른 방열 특성 연구)

  • Kim, Nam-Kyun;Kim, Sang-Cheol;Bahng, Wook;Song, Geun-Ho;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1092-1095
    • /
    • 2001
  • Steady state thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin with a thickness of 25${\mu}$m. It was assumed that the generated heat which is mainly by the on-state voltage drop, 9V for 12kV diode, is dissipated by way of the conduction through diodes layers to bonding wire and of the convection at the surface of passivating resin. It was predicted by the thermal analysis that the temperature rise of a pn junction of the 12kV diode can reach at the range of 16∼34$^{\circ}C$ under the given boundary conditions. The thickness and thermal conductivity(0.3∼3W/m-K) of the passivating resin did little effect to lower thermal resistance of the diode. As the length of the bonding wire increased, which means the distance of heat conduction path became longer, the thermal resistance increased considerably. The thermal analysis results imply that the generated heat of the diode is dissipated mainly by the conduction through the route of diode-dummy wafer-bonding wire, which suggests to minimize the length of the wire for the lowest thermal resistance.

  • PDF

Optimal Design and fabrication of Prototype DC Reactor for Inductive Superconducting fault Current Limiter (유도형 고온초전도 한류기용 Prototype 직류 리액터의 설계와 제작)

  • 김태중;강형구;고태국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1292-1298
    • /
    • 2003
  • In this paper, dc reactor lot the inductive high-Tc superconducting fault current limiter (SFCL) was optimally designed by finite element method(FEM). The Prototype high-Tc do reactor was manufactured and compared to the results of design. This dc reactor consists of 4∼stacked double pancake coils which are wounded with Bi-2223 wire coated with SUS315L. Kapton tape is used for the insulation of turn to turn and layer to layer. Each pancake is connected in series by soldering Finally, optimal design and manufacture method lot the dc reactor is suggested in this paper. Through the comparison of result of optimal design and experimental result of prototype high-Tc superconducting dc reactor, reliance on the design of the high-Tc dc reactor tot the 1.2 kV/80 A SFCL is proved.

A Study on Correlation between Busbar Electrodes of Heterojunction Technology Solar Cells and the Peel Strength (실리콘 이종접합 태양전지의 버스바 전극 두께와 접합강도의 상관관계)

  • Da Yeong Jun;Jiyeon Moon;Godeung Park;Zulmandakh Otgongerel;Hyeryeong Nam;Oryeon Kwon;Hyunsoo Lim;Sung Hyun Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.44-48
    • /
    • 2023
  • In heterojunction technology (HJT) solar cells, low-temperature curing paste is used because the passivation layer deteriorates at high temperatures of 200℃ or higher. However, manufacturing HJT photovoltaic (PV) modules is challenging due to the weak peel strength between busbar electrodes and cells after soldering process. For this issue, the electrode thicknesses of the busbars of the HJT solar cell were analyzed, and the peel strengths between electrodes and wires were measured after soldering using an infrared (IR) lamp. As a result, the electrodes printed by the screen printing method had a difference in thickness due to screen mask. Also, as the thickness of the electrode increased, the peel strength of the wire increased.

MICROSTRUCTURE OF COMBINATION CLASP JOINTS IN REMOVABLE PARTIAL DENTURE (가철성(可撤性) 국부의치(局部義齒)에서 연합(聯合) Clasp 연결부위(連結部位)의 미세구조(微細構造))

  • Son, Han-Kee;Kim, Tae-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.22 no.1
    • /
    • pp.123-132
    • /
    • 1984
  • To evaluate the microstructure of various combination clasp joint in removable partial denture, the auther selected framework alloys (Type IV gold alloy, Dentaurium, Ticonium 100) and wrought wires (gold alloy, Ticonium) for this study. Twelve series of combination joints were made by investment soldering technic and wrought wire embedded casting technic. All specimens were cut cross-sectionally and longitudinally, then examined with metallurgical microscope. The results were as follows; Some diffusion was observed in the properly constructed combination clasp joints. In soldered joints, empolying precious alloys were more favorable than non-precious alloys. In castion joints, assemblage of same alloy between framework and wrought wire was superior to other groups. Some impurities were observed in both joints by technical problems.

  • PDF

An experimental study on the cytotoxicity of orthodontic wires (교정용 호선의 세포독성에 관한 실험적 연구)

  • Lim, Yong-Kyu;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.26 no.5 s.58
    • /
    • pp.591-599
    • /
    • 1996
  • This study was undertaken to investigate the cytotoxicity of orthodontic wires after doing various treatments to the wires. 018x025 inch Stainless steel(A) and Co-Cr(B) wires were used and each of them were divided into 4 groups. A-1 and B-1 groups were as received state, and A-2 and B-2 groups were heat treated. A-3 and B-3 groups were electropolished after heat treatment, and A-4 and B-4 groups were soldered with Ag-solder. Each group had 3 wires and these were sterilized with Ethylene Oxide gas. We used human gingival fibroblast cell culture and agar overlay technique to investigate the cytotoxicity of each group of wires. The cytotoxicity of wire was assessed using reaction index (zone index/lysis index). The findings of this study were as follows. 1. Both of the stainless steel wire and Co-Cr wire showed no cytotoxicity in as received state. 2. Heat treatment or electropolishing of the wires had no effect on the cytotoxicity of the wires 3. Soldered stainless steel wires showed a little wider zone of discoloration than soldered Co-Cr wires, but the zone index and cytotoxicity(reaction index) was not different. 4. Soldered wires showed moderate cytotoxicity in both of the wires.

  • PDF

Heat Dissipation Analysis of High Voltage Diode Package for Microwave oven (전자레인지용 고압다이오드의 방열특성)

  • Kim, Sang-Cheol;Kim, Nam-Kyun;Bahng, Wook;Seo, Gil-Soo;Moon, Seoung-Ju;Oh, Bang-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.205-208
    • /
    • 2001
  • Steady state and transient thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage for microwave oven. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally copper wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin and epoxy with a thickness of $25{\mu}m$ and $3700{\mu}m$, respectively. The chip size, thickness and material properties were very important factor for high voltage diode package. And also, thermal stress value was highest in the edge of diode and solder. So, design of edge in silicon was very important to thermal stress.

  • PDF