• Title/Summary/Keyword: Wire Discharge Machining

Search Result 100, Processing Time 0.022 seconds

CAD/CAM 와이어 방전가공의 가공확대여유에 관한 연구 (A Study on Discharge Gap in CAD/CAM Wire Electric Discharge Machining)

  • 강상훈;박원조;배성한
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.380-384
    • /
    • 1993
  • In precision wire electrode discharge machining by CAD/CAM, it is the most important problem on machining method to determine the wire electrode offset amout from the accurate calculation of discharge gap in order to increase the machining accuracy, after fixing the main machining conditions such as machining speed, wire tension, coolant conductivity, gap vlotage. The present study shows the relationships between discharge gap and main machining conditions by means of a series of experiment concerned with the gap using the workpiece of STD 11, and suggests the experimental eguation to calculate the accurate wire electrode offset amount under the given machining conditions for spot workers.

Wire-Cut EDM에서 가공조건에 따른 STD11의 가공특성에 관한 연구 (A Study on the Characteristics to working Condition of STD11 in Wire-Cut EDM)

  • 이홍길;김원일;이윤경;왕덕현;김종업
    • 한국기계가공학회지
    • /
    • 제4권3호
    • /
    • pp.5-12
    • /
    • 2005
  • In wire discharge machining which is using STD 11 as die materials, the major factors of machining speed are discharge voltage, discharge current, and discharge time. All of the three factors give the effect. Increasing of the discharge pulse time gets groove width wider and it relatively increases surface roughness and clearance. If no load voltage is decreased, surface roughness is good but it decreases machining speed. If on time is increased, machining speed will get faster and clearance and offset value also get bigger.

  • PDF

건성 와이어방전가공 프로세스 특성에 관한 실험적 연구 (Experimental Study on Characteristics of Dry Wire Electrical Discharge Machining (EDM) Process)

  • 이상원;김홍석
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.11-17
    • /
    • 2010
  • This study investigates the non-traditional manufacturing process of dry wire electrical discharge machining (EDM) in which liquid dielectric is replaced by a gaseous medium. Wire EDM experiments of thin workpieces were conducted both in wet and dry EDM conditions to examine the effects of spark cycle (T), spark on-time ($T_{on}$), thickness of work pieces, and work material on machining performance. The material removal rate (MRR) in the dry wire EDM case was much lower than that in the wet wire EDM case. In addition, the thickness of workpiece and work-material were found to be critical factors influencing the MRR for dry EDM process. The relative ratios of spark, arc and short circuit were also calculated and compared to examine the effectiveness of processes of dry and wet wire EDM.

와이어 방전가공에서 가공조건에 대한 방전갭 크기 고찰 (Consideration of the Clearance According to the Wire Electrical Discharge Machining Conditions)

  • 이건범;최태준;이세현;손일복;이성용;한상희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.105-110
    • /
    • 1999
  • Wire electrical discharge machining (WEDM) is one of the unconventional machining processes, which is utilizing electrical energy to remove work-piece. In recent years WEDM used widely in die-sinking industry because WEDM can machine any hard materials if only it has conductivity and can machine accurately to the complex geometry, for fine wire is used in WEDM for the tool electrode. However WEDM is non-contact machining process, which is utilizing discharge phenomena occurring between two electrodes, the size of the machined part is larger than that of the tool electrode size. It is called discharge gap or clearance the difference size between the tool electrode and the machined part in WEDM. By the experiment clearances according to the machining condition was investigated.

  • PDF

코팅와이어가 와이어 방전가공 특성에 미치는 영향 (The effect of coating wire on the performance of wire electrical discharge machining)

  • 임세환;김준현;김주현
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.177-185
    • /
    • 2004
  • The machining performance of wire electrical discharge machining(WEDM), such as cutting speed, surface roughness and straightness depend on the electrode, and the machining parameters are diverse and affect each other. Therefore operator must have a lot of experiences of the parameter for the better machining performance in WEDM. An approach to minimize the time for determining of parameters setting is proposed. Based on the Taguchi method, the significant factors affecting the machining performance are determined. Types of electrodes are arranged at inner array in tables of orthogonal arrays so that we can estimate machining performances of each electrode. Coating wire shows better performances than brass wire in cutting speed but it produces poor surface roughness, and two wires shows similar performance in straightness

와이어 가공 조건 자동 생성 2 단계 신경망 추정 (Automatic Generation of Machining Parameters of Electric Discharge Wire-Cut Using 2-Step Neuro-Estimation)

  • 이건범;주상윤;왕지남
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.7-13
    • /
    • 1998
  • This paper presents a methodology for determining machining conditions in Electric Discharge Wire-Cut. Unification of two phase neural network approach with an automatic generation of machining parameters is designed. The first phase neural network, which is 1 to M backward-mapping neural net, produces approximate machining conditions. Using approximate conditions, all possible conditions are newly created by the proposed automatic generation procedure. The second phase neural net, which is a M to 1 forward-mapping neural net, determines the best one among the generated candidates. Simulation results with ANN are given to verify that the presenting methodology could apply for determining machining parameters in Electric Discharge Wire-Cut.

  • PDF

합금공구강 SKS3의 와이어컷 방전가공 특성 (Machining Characteristics of SKS3 in Wire Cut Electrical Discharge Machining)

  • 고병두;신명철
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.101-106
    • /
    • 2008
  • In the wire cut electrical discharge machining, the optimal machining parameters setting satisfying the requirements of both high efficiency and good quality is very difficult because its process involves a series of complex physical phenomena and the machining parameters are numerous over diverse range. In this paper, the experimental investigation has been performed to find out the influence of the machining parameters on the machining performance such as cutting speed and surface roughness. The selected experimental parameters are no load voltage, discharge peak current and pulse-off time. The experimental results give the guideline for selecting suitable machining parameters.

와이어컷 방전에 의한 합금공구강과 초경합금의 가공특성 (A Study on the Characteristics of Wire-Cut Electric Discharge Machining of Alloyed Tool Steel and Tungsten Carbide)

  • 이재명;허성중;김원일
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.123-133
    • /
    • 1996
  • From the experimental study of wire-cut Electric Discharge Machining of alloyed tool steel and tungsten carbide, the characteristics such as cutting speed, surface roughness has been observed and evaluated for various conditions. Cutting speed is improved as peak discharge current and wire tension become increased, and gap voltage and spark cycle decreased. Surface roughness can be better when peak discharge current and gap voltage become smaller, or spark cycle and wire tension become larger. Secondary cut is recommended to obtain high precision and good quality.

  • PDF

화상처리를 이용한 방전와이어의 성능평가에 대한 연구 (A Study on the efficiency test of Electric Discharge Machine Wire using Image processing)

  • 배진한;이위로;유송민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.117-122
    • /
    • 2002
  • Electrical discharge machining uses thermal energy from electrical discharge, while wire electrical discharge machining (WEDM) technology is widely used in conductive material machining. This paper proposes a method for evaluating the characteristics of wires in WEDM. In order to evaluate the wire processing performance, processing speed and roughness, straightness, corner processing have been assessed with precision experiment equipment and image processing including Laplacian filtering with various threshold levels.

  • PDF

STD-11 합금공구강과 P-20 초경합금재의 WEDM 특성에 관한 연구 (A Study on the Characteristics of Wire-Cut Electrical Discharge Machining for STD-11 Alloy Steel and P-20 Tungsten Carbide Alloy)

  • 이재명;허성중;김원일
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.22-28
    • /
    • 1996
  • From the experimental study of Wire-Cut Electric Discharge Machining of STD-11 alloy steel and P-20 tungsten carbide, the characteristics such as hand drum form and discharge gap have been observed and evaluated for various conditions. Hand drum form can be improved when gap have been observed and evaluated for various conditions. Hand drum form can be improved when gap voltage and spark cycle become smaller, thickness become thinner, wire tension become larger and the no of cutting increases. When 60mm thickness tungsten carbide is cut in normal condition, hand drum form becomes larger due to the low conductivity machining allowance become slightly larger when peak discharge current and gap voltage become larger, or wire tension becomes smaller. Under the same condition, machining allowance of tungsten carbide is larger than alloyed steel by 1/100mm.

  • PDF