• Title/Summary/Keyword: Wing Structure

Search Result 274, Processing Time 0.023 seconds

External Morphology and Ultrasound Characteristics of the Ussurian Tube-nosed Bat (Murina Ussuriensis) (작은관코박쥐(Murina ussuriensis)의 외부형태 및 초음파 특성에 관한 기초 연구)

  • Chung, Chul Un;Han, Sang Hoon;Kim, Sung Chul;Lee, Hwa Jin
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.521-525
    • /
    • 2014
  • The Ussurian tube-nosed bat (Murina ussuriensis) is a registered endangered species that has not been observed in South Korea since 1960. We were able to capture three individuals of M. ussuriensis between 2011 and 2013 at Sobaeksan National Park. The discovery of this species was the first time within 50 years. To collect basic data on the M. ussuriensis, we analyzed the external morphology and ultrasound characteristics of the captured bats. The results indicated that M. ussuriensis weigh approximately 5.2 g, which is less than that of a typical small bat such as Pipistrellus abramus. The bat's wing-type ratio was determined to be 1.22 and classified as a broad and short wingspan type. The bat uses FM signals for ultrasound with a peak frequency of 92 kHz. The M. ussuriensis seems to be a forest-dwelling bat that preys on insects by maneuvering expertly within the complex mazelike structure of forests. In the future, further research on the hibernation and foraging sites of the bats is necessary to protect and monitor the species.

Aircraft wings dynamics suppression by optimal NESs designed through an Efficient stochastic linearisation approach

  • Navarra, Giacomo;Iacono, Francesco Lo;Oliva, Maria;Esposito, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.405-423
    • /
    • 2020
  • Non-linear energy sink (NES) is an emerging passive absorber able to mitigate the dynamic response of structures without any external energy supply, resonating with all the modes of the primary structure to control. However, its inherent non-linearities hinder its large-scale use and leads to complicated design procedures. For this purpose, an approximate design approach is herein proposed in a stochastic framework. Since loads are random in nature, the stochastic analysis of non-linear systems may be performed by means of computational intensive techniques such as Monte Carlo simulations (MCS). Alternatively, the Stochastic Linearisation (SL) technique has proven to be an effective tool to investigate the performance of different passive control systems under random loads. Since controlled systems are generally non-classically damped and most of SL algorithms operate recursively, the computational burden required is still large for those problems that make intensive use of SL technique, as optimal design procedures. Herein, a procedure to speed up the Stochastic Linearisation technique is proposed by avoiding or strongly reducing numerical evaluations of response statistics. The ability of the proposed procedure to effectively reduce the computational effort and to reliably design the NES is showed through an application on a well-known case study related to the vibrations mitigation of an aircraft wing.

Fiber optic shape sensor system for a morphing wing trailing edge

  • Ciminello, Monica;Ameduri, Salvatore;Concilio, Antonio;Dimino, Ignazio;Bettini, Paolo
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.441-450
    • /
    • 2017
  • The objective of this work is to present a conceptual design and the modelling of a distributed sensor system based on fiber optic devices (Fiber Bragg Grating, FBG), aimed at measuring span-wise and chord-wise variations of an adaptive (morphing) trailing edge. The network is made of two different integrated solutions for revealing deformations of the reference morphing structure. Strains are confined to typical values along the span (length) but they are expected to overcome standard ranges along the chord (width), up to almost 10%. In this case, suitable architectures may introduce proper modulations to keep the measured deformation low while preserving the information content. In the current paper, the designed monitoring system combines the use of a span-wise fiber reinforced patch with a chord-wise sliding beam. The two elements make up a closed grid, allowing the reconstruction of the complete deformed shape under the acceptable assumption that the transformation refers to regular geometry variations. Herein, the design logic and some integration issues are reported. Preliminary experimental test results are finally presented.

Aero-Structure MDO Design of Supersonic Fighter Wing Using Response Surface Methodology (반응면 기법을 이용한 초음속 전투기 날개의 공력-구조 다학제간 설계)

  • Kim, Yu-Shin;Kim, Ji-Han;Jeon, Yong-Hee;Bang, Je-Sung;Lee, Dong-Ho;Kim, Yong-Hyup;Park, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.588-594
    • /
    • 2001
  • 본 연구를 통해 초음속 전투기 날개의 공력-구조를 동시에 고려한 다학제간 설계를 수행하였다. 공력해석을 위해 사용된 3 차원 Euler Code는 수렴 속도를 개선하기 위해 Multigrid를 적용하였으며, 3차의 transfinite interpolation을 사용하여 O-H type의 공력해석 격자계를 생성하였다. 구조 분야는 절점당 54개의 자유도를 가지는 9 절점 쉘 혼합 유한요소(9-node shell mixed finite element)를 사용하여 해석을 수행하였다. 설계변수는 공력쪽으로 날개의 평면형상에 관련된 변수 3개, 구조쪽은 날개 윗면과 아래면의 표피두께에 관련된 4개의 설계변수 사용하였으며, D-optimality 조건을 만족시키는 실험점들에 대해 공력해석과 구조해석이 연동된 정적 공탄성 해석을 수행한 후, 반응면 기법을 이용하여 목적함수와 제약조건에 대한 반응면을 구성하였다. 단일점 설계를 수행한 후 이를 바탕으로 3개의 설계점을 동시에 고려한 다점 설계를 수행하였으며, 공력만을 고려한 설계 결과와 공력-구조를 동시에 고려한 다학제간 설계결과의 비교를 통해 다학제간 설계의 타당성과 우수성을 입증하였다.

  • PDF

Autonomous Flight Experiment of a Foldable Quadcopter with Airdrop Launching Function (고공 비행개시가 가능한 접이식 쿼더콥터 자율비행 실험)

  • Lee, Cheonghwa;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.109-117
    • /
    • 2018
  • The experimental results are presented of an autonomous flight algorithm of a foldable quadcopter with airdrop launching functions. A foldable wing structure enabled the quadcopter to be inserted into a rocket container with limited space. The foldable quadcopter was then separated from the rocket in the air. The flight pattern was tracked using a global positioning system (GPS) with various sensors, including an inertial measurement unit (IMU) module until a designated target position was reached. Extensive field tests were conducted through an international rocket competition, ARLISS 2017, which was held in Black Rock Desert, Nevada, USA. The flight trajectory record of the experiments is stored in electrically erasable programmable read-only memory (EEPROM) embedded in the main control unit. The flight record confirmed that the quadcopter successfully separated from the rocket, executed flight toward the target for a certain length of time, and stably landed on the ground.

Spectral Clustering with Sparse Graph Construction Based on Markov Random Walk

  • Cao, Jiangzhong;Chen, Pei;Ling, Bingo Wing-Kuen;Yang, Zhijing;Dai, Qingyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2568-2584
    • /
    • 2015
  • Spectral clustering has become one of the most popular clustering approaches in recent years. Similarity graph constructed on the data is one of the key factors that influence the performance of spectral clustering. However, the similarity graphs constructed by existing methods usually contain some unreliable edges. To construct reliable similarity graph for spectral clustering, an efficient method based on Markov random walk (MRW) is proposed in this paper. In the proposed method, theMRW model is defined on the raw k-NN graph and the neighbors of each sample are determined by the probability of the MRW. Since the high order transition probabilities carry complex relationships among data, the neighbors in the graph determined by our proposed method are more reliable than those of the existing methods. Experiments are performed on the synthetic and real-world datasets for performance evaluation and comparison. The results show that the graph obtained by our proposed method reflects the structure of the data better than those of the state-of-the-art methods and can effectively improve the performance of spectral clustering.

Strategy for Helicopter Industry to be a Growth Driver (헬기산업의 성장동력화 방안)

  • Park, Joong-Yong;Chang, Byeong-Hee;Lee, Dae-Sung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.133-142
    • /
    • 2008
  • We study the possibility of entering into helicopter market with respect to demand, industry structure and infrastructure. In conclusion, it is possible to enter into it based on domestic demand if we complement some technology, financial assistance system and helicopter operation related regulation. Strategy is made for helicopter industry to be a growth driver and then we suggest five projects to carry out it. Those are lasting creation of helicopter demand, possession of core part material and competitive technology, construction of airworthiness certification system and infrastructure for activation of helicopter operation, improvement of financial assistance system and finally strengthening policy modulation between civil, army, and government.

  • PDF

THE INVESTIGATION OF HELICOPTER ROTOR AERODYNAMIC ANALYSIS METHODS (헬리콥터 로터 공력해석을 위한 수치적 방법 연구)

  • Park, N.E.;Woo, C.H.;Rho, H.W.;Kim, C.H.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.120-124
    • /
    • 2007
  • Helicopters and rotary-wing vehicles encounter a wide variety of complex aerodynamic phenomena and these phenomena present substantial challenges for computational fluid dynamics(CFD) models. This investigation presents the rotor aerodynamic analysis items for the helicopter development and variety aerodynamic analysis methods to provide the better solution to researchers and helicopter developers between aerodynamic problems and numerical aerodynamic analysis methods. The numerical methods to make an analysis of helicopter rotor are as below - CFD Modelling : actuator disk model, BET model, fully rotor model,... - Grid : sliding mesh, chimera mesh / structure mesh, unstructure mesh,... - etc. : panel method periodic boundary, quasi-steady simulation, incompressible,... The choice of CFD methodology and the numerical resolution for the overall problem have been driven mostly by available computer speed and memory at any point in time. The combination of the knowledge of aerodynamic analysis items, available computing power and choice of CFD methods now allows the solution of a number of important rotorcraft aerodynamics design problems.

  • PDF

Standard Procedure for the Aerodynamic Design of Small Wind Turbine Blades (소형 풍력 블레이드 공력 설계를 위한 표준 절차 구축)

  • Chang, Se-Myong;Jeong, Su-Yun;Seo, Hyun-Soo;Kyong, Nam-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.473-473
    • /
    • 2009
  • There have been many academic researches on the aerodynamic design of wind turbine based on blade element method (BEM) and momentum theory (MT, or actuating disk theory). However, in the real world, the turbine blade design requires many additional constraints more than theoretical analysis. The standard procedure is studied in the present paper to design new blades for the wind turbine system ranged from the small size from 1 to 10 kW. From the experience of full design of a 10 kW blade, the authors tried to set up a standard procedure for the aerodynamic design based on IEC 61400-2. Wind-turbine scale, rotating speed, and geometrical chord/twist distribution at the segmented span positions are calculated with a suitable BEM/MT code, and the geometrical shape of tip and root should be modified after considering various parameters: wing-tip vortex, aerodynamic noise, turbine efficiency, structural safety, convenience of fabrication, and even economic factor likes price, etc. The evaluated data is passed to the next procedure of structural design, but some of them should still be corresponded with each other: the fluid-structure interaction is one of those problems not yet solved, for example. Consequently, the design procedure of small wind-turbine blades is set up for the mass production of commercial products in this research.

  • PDF

Loads Analysis of Smart UAV Using ARGON (ARGON을 이용한 스마트 무인기 비행하중해석)

  • Shin, Jeong-Woo;Kim, Sung-Chan;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.76-84
    • /
    • 2005
  • For flight loads analysis of Smart UAV, applicable regulations and loads conditions should be prepared in advance, and modeling for aerodynamics, weight, and structure should be performed. Panel method is usually adopted for aircraft loads analysis to obtain aerodynamic loads. In this study, ARGON which is a multidisciplinary fixed wing aircraft design software co-developed by KARI and TsAGI was used for loads analysis. ARGON can be utilized for flutter and stress analysis as well as for flight and ground loads analysis. In this paper, flight loads analysis of Smart UAV which is a FAR 23 category airplane was performed with ARGON and the results were presented.