• Title/Summary/Keyword: Window layer

Search Result 352, Processing Time 0.032 seconds

Automatic Extraction of Individual Tree Height in Mountainous Forest Using Airborne Lidar Data (항공 Lidar 데이터를 이용한 산림지역의 개체목 자동 인식 및 수고 추출)

  • Woo, Choong-Shik;Yoon, Jong-Suk;Shin, Jung-Il;Lee, Kyu-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.251-258
    • /
    • 2007
  • Airborne Lidar (light detection and ranging) can be an effective alternative in forest inventory to overcome the limitations of conventional field survey and aerial photo interpretation. In this study, we attempt to develop methodologies to identify individual trees and to estimate tree height from airborne Lidar data. Initially, digital elevation model (DEM) data representing the exact ground surface were generated by removing non-ground returns from the multiple-return laser point clouds, obtained over the coniferous forest site of rugged terrain. Based on the canopy height model (CHM) data representing non-ground layer, individual tree heights are extracted through pseudo-grid method and moving window filtering algorithm. Comparing with field survey data and aerial photo interpretation on sample plots, the number of trees extracted from Lidar data show over 90% accuracy and tree heights were underestimated within 1.1m in average at two plantation stands of pine (Pinus koraiensis) and larch (Larix leptolepis).

PZT thin capacitor characteristics of the using Pt-Ir($Pt_{80}Ir_{20}$)-alloy (Pt-Ir($Pt_{80}Ir_{20}$)-alloy를 이용한 PZT 박막 캐패시터 특성)

  • Jang, Yong-Un;Chang, Jin-Min;Lee, Hyung-Seok;Lee, Sang-Hyun;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.47-52
    • /
    • 2002
  • A processing method is developed for preparing sol-gel derived $Pb(Zr_{1-x}Ti_x)O_3$ (x=0.5) thin films on Pt-Ir($Pt_{80}Ir_{20}$)-alloy substrates. The as-deposited layer was dried on a plate in air at $70^{\circ}C$. And then it was baked at $1500^{\circ}C$, annealed at $450^{\circ}C$ and finally annealed for crystallization at various temperatures ranging from $580^{\circ}C$ to $700^{\circ}C$ for 1hour in a tube furnace. The thickness of the annealed film with three layers was $0.3{\mu}m$. Crystalline properties and surface morphology were examined using X-ray diffractometer (XRD). Electrical properties of the films such as dielectric constant, C-V, leakage current density were measured under different annealing temperature. The PZT thin film which was crystallized at $600^{\circ}C$ for 60minutes showed the best structural and electrical dielectric constant is 577. C-V measurement show that $700^{\circ}C$ sample has window memory volt of 2.5V and good capacitance for bias volts. Leakage current density of every sample show $10^{-8}A/cm^2$ r below and breakdown voltage(Vb) is that 25volts.

  • PDF

Context cognition technology through integrated cyber security context analysis (통합 사이버 보안 상황분석을 통한 관제 상황인지 기술)

  • Nam, Seung-Soo;Seo, Chang-Ho;Lee, Joo-Young;Kim, Jong-Hyun;Kim, Ik-Kyun
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.80-85
    • /
    • 2015
  • As the number of applications using the internet the rapidly increasing incidence of cyber attacks made on the internet has been increasing. In the equipment of L3 DDoS attack detection equipment in the world and incomplete detection of application layer based intelligent. Next-generation networks domestic product in high-performance wired and wireless network threat response techniques to meet the diverse requirements of the security solution is to close one performance is insufficient compared to the situation in terms of functionality foreign products, malicious code detection and signature generation research primarily related to has progressed malware detection and analysis of the research center operating in Window OS. In this paper, we describe the current status survey and analysis of the latest variety of new attack techniques and analytical skills with the latest cyber-attack analysis prejudice the security situation.

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.

Context cognition technology through integrated cyber security context analysis (통합 사이버 보안 상황분석을 통한 관제 상황인지 기술)

  • Nam, Seung-Soo;Seo, Chang-Ho;Lee, Joo-Young;Kim, Jong-Hyun;Kim, Ik-Kyun
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.313-319
    • /
    • 2015
  • As the number of applications using the internet the rapidly increasing incidence of cyber attacks made on the internet has been increasing. In the equipment of L3 DDoS attack detection equipment in the world and incomplete detection of application layer based intelligent. Next-generation networks domestic product in high-performance wired and wireless network threat response techniques to meet the diverse requirements of the security solution is to close one performance is insufficient compared to the situation in terms of functionality foreign products, malicious code detection and signature generation research primarily related to has progressed malware detection and analysis of the research center operating in Window OS. In this paper, we describe the current status survey and analysis of the latest variety of new attack techniques and analytical skills with the latest cyber-attack analysis prejudice the security situation.

$Y_2O_3$ single buffer layer deposition using DC reactive sputtering for the superconducting coated conductor (DC reactive sputtering 증착법을 이용한 초전도테이프의 $Y_2O_3$ 단일완충층 증착)

  • Kim, Ho-Sup;Ko, Rock-Kil;Oh, Sang-Soo;Kim, Tae-Hyung;Song, Kyu-Jeong;Ha, Hong-Soo;Yang, Ju-Saeng;Park, Yu-Mi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.52-53
    • /
    • 2005
  • $Y_2O_3$ film was directly deposited on Ni-3at%W substrate using DC reactive sputtering technique. Metallic yttrium was used for DC sputtering target and water vapor was used for oxidizing the deposited metallic Yttrium atoms on the substrate. The window of the water vapor turned out to be broad. The minimum partial pressure of water vapor was determined by sufficient oxidation of the $Y_2O_3$ film, and the maximum partial pressure of water vapor was determined by the non-oxidation of the target surface. As the sputtering power was increased, The deposition rate increased without narrowing the window. The fabricated $Y_2O_3$ films showed good texture qualities and surface morphologies. The YBCO film deposited directly on the $Y_2O_3$ buffered Ni-3at%W substrate showed $T_c$, $I_c$ (77 K, self field), and $J_c$ (77 K, self field) of 89 K, 64 A/cm and 1.l $MA/cm^2$, respectively.

  • PDF

Production of agricultural weather information by Deep Learning (심층신경망을 이용한 농업기상 정보 생산방법)

  • Yang, Miyeon;Yoon, Sanghoo
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.293-299
    • /
    • 2018
  • The weather has a lot of influence on the cultivation of crops. Weather information on agricultural crop cultivation areas is indispensable for efficient cultivation and management of agricultural crops. Despite the high demand for agricultural weather, research on this is in short supply. In this research, we deal with the production method of agricultural weather in Jeollanam-do, which is the main production area of onions through GloSea5 and deep learning. A deep neural network model using the sliding window method was used and utilized to train daily weather prediction for predicting the agricultural weather. RMSE and MAE are used for evaluating the accuracy of the model. The accuracy improves as the learning period increases, so we compare the prediction performance according to the learning period and the prediction period. As a result of the analysis, although the learning period and the prediction period are similar, there was a limit to reflect the trend according to the seasonal change. a modified deep layer neural network model was presented, that applying the difference between the predicted value and the observed value to the next day predicted value.

Analysis of Beam Hardening of Modulation Layers for Dual Energy Cone-beam CT (에너지 변조 필터로 구현한 이중 에너지 콘빔 CT의 에너지 스펙트럼 평가 연구)

  • Ahn, Sohyun;Cho, Sam Ju;Keum, Ki Chang;Choi, Sang Gyu;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • Dual energy cone-beam CT can distinguish two materials with different atomic compositions. The principle of dual energy cone-beam CT based on modulation layer is that higher energy spectrum can be acquired at blocked x-ray window. To evaluate the possibility of modulation layer based dual energy cone-beam CT, we analyzed x-ray spectrum for various thicknesses of modulation layers by Monte Carlo simulation. To compare with the results of simulation, the experiment was performed on prototype cone-beam CT for 50~100 kVp with CdTe XR-100T detector. As the result of comparing, the mean energy of energy spectrum for 80 kVp are well matched with that of simulation. The mean energy of energy spectrum for 80 and 120 kVp were increased as 1.67 and 1.52 times by 2.0 mm modulation layer, respectively. We realized that the virtual dual energy x-ray source can be generated by modulation layer.

Nickel Film Deposition Using Plasma Assisted ALD Equipment and Effect of Nickel Silicide Formation with Ti Capping Layer (Plasma Assisted ALD 장비를 이용한 니켈 박막 증착과 Ti 캡핑 레이어에 의한 니켈 실리사이드 형성 효과)

  • Yun, Sang-Won;Lee, Woo-Young;Yang, Chung-Mo;Ha, Jong-Bong;Na, Kyoung-Il;Cho, Hyun-Ick;Nam, Ki-Hong;Seo, Hwa-Il;Lee, Jung-Hee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.19-23
    • /
    • 2007
  • The NiSi is very promising candidate for the metallization in 45 nm CMOS process such as FUSI(fully silicided) gate and source/drain contact because it exhibits non-size dependent resistance, low silicon consumption and mid-gap workfunction. Ni film was first deposited by using ALD (atomic layer deposition) technique with Bis-Ni precursor and $H_2$ reactant gas at $220^{\circ}C$ with deposition rate of $1.25\;{\AA}/cycle$. The as-deposited Ni film exhibited a sheet resistance of $5\;{\Omega}/{\square}$. RTP (repaid thermal process) was then performed by varying temperature from $400^{\circ}C$ to $900^{\circ}C$ in $N_2$ ambient for the formation of NiSi. The process temperature window for the formation of low-resistance NiSi was estimated from $600^{\circ}C$ to $800^{\circ}C$ and from $700^{\circ}C$ to $800^{\circ}C$ with and without Ti capping layer. The respective sheet resistance of the films was changed to $2.5\;{\Omega}/{\square}$ and $3\;{\Omega}/{\square}$ after silicidation. This is because Ti capping layer increases reaction between Ni and Si and suppresses the oxidation and impurity incorporation into Ni film during silicidation process. The NiSi films were treated by additional thermal stress in a resistively heated furnace for test of thermal stability, showing that the film heat-treated at $800^{\circ}C$ was more stable than that at $700^{\circ}C$ due to better crystallinity.

  • PDF

Electrical Characteristics of Pt/SBT/${Ta_2}{O_5}/Si$ Structure for Non-Volatile Memory Device (비휘발성 메모리를 위한 Pt/SBT/${Ta_2}{O_5}/Si$ 구조의 전기적 특성에 관한 연구)

  • Park, Geon-Sang;Choe, Hun-Sang;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.199-203
    • /
    • 2000
  • $Ta_2_O5$ and $Sr_0.8Bi_2.4Ta_2O_9$ films were deposited on p-type Si(100) substrates by a rf-magnetron sputtering and the metal organic decomposition (MOD), respectively.The electrical characteristics of the $Pt/SBT/Ta_2O_5/Si$ structure were obtained as the functions of $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering and $Ta_2_O5$ thickness. And to certify the role of $Ta_2_O5$ as a buffer layer, the electrical characteristics of $Pt/SBT/Ta_2O_5/Si$ were compared. $Pt/SBT/Ta_2O_5/Si$ capacitor with 20% $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering did now show typical C-V curve of metal/ferroelectric/insulator/semiconductor (MFIS) structure. The capacitor with 20% $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering had the largest memory window. And the memory window was decreased as the $Ta_2_O5$ gas flow ratio during the $Ta_2_O5$ sputtering was increased to 40%, 60%. In the C-V characteristics of the $Pt/SBT/Ta_2O_5/Si$ capacitors with the different $Ta_2_O5$ thickness, the capacitor with 26nm thickness of $Ta_2_O5$ had the largest memory window. The C-V and leakage current characteristics of the Pt/SBT/Si structure were worse than those of $Pt/SBT/Ta_2O_5/Si$ structure. These results and Auger electron spectroscopy (AES) measurement showed that $Ta_2_O5$ films as a buffer layer tool a role to prevent from the formation of intermediate phase and interdiffusion between SBT and Si.

  • PDF