• 제목/요약/키워드: WindSIM

검색결과 379건 처리시간 0.029초

WAsP과 WindSIM의 풍력자원예측성 평가 (Assessment of Wind Resources Predictions using Commercial Codes in Complex Terrains of Korea)

  • 이원선;황윤석;백인수;유능수
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.173-180
    • /
    • 2009
  • Simulations using two well-known commercial codes, WAsP and WindSIM, were performed to predict the wind resources in complex terrains of Korea. The predictions from the codes were compared with the measured data. Cross predictions were performed for two closely located measurement sites. The results from WindSIM were found to be more accurate than those from WAsP. The predictions for wind velocity and direction in five different sites of complex terrain from WAsP and WindSIM were also compared. It was found that if the self prediction of the wind velocity and direction from WAsP is close to the measured wind data, the discrepancies between WAsP results and WindSIM results are also close.

  • PDF

Including Thermal Effects in CFD Wind Flow Simulations

  • Meissner, Catherine;Gravdahl, Arne Reidar;Steensen, Birthe
    • 한국환경과학회지
    • /
    • 제18권8호
    • /
    • pp.833-839
    • /
    • 2009
  • The calculation of the wind field for resource assessment is done by using CFD Reynolds-Averaged Navier-Stokes simulations performed with the commercial software WindSim. A new interface has been created to use mesoscale simulation data from a meteorological model as driving data for the simulations. This method makes it necessary to take into account thermal effects on the wind field to exploit the full potential of this method. The procedure for considering thermal effects in CFD wind field simulations as well as the impact of thermal effects on the wind field simulations is presented. Simulations for non-neutral atmospheric conditions with the developed method are consistent with expected behavior and show an improvement of simulation results compared with observations.

WindSim을 이용한 싱가폴 바람지도 작성 (Wind Mapping of Singapore Using WindSim)

  • 김현구
    • 한국환경과학회지
    • /
    • 제20권7호
    • /
    • pp.839-843
    • /
    • 2011
  • We have established a wind map of Singapore, a city-state characterized its land cover by urban buildings to confirm a possibility of wind farm development. As a simple but useful approximation of urban canopy, a zero-plane displacement concept was employed. The territory is divided into 15 sectors having similar urban building layouts, and zero-plane displacement, equivalent roughness height at each sector was calculated to setup a terrain boundary condition. Annual mean wind speed and mean wind power density map were drawn by a CFD micrositing model, WindSim where Changi International Airport wind data was used as an in-situ measurement. Unfortunately, predicted wind power density does not exceed 80 $W/m^2$ at 50 m above ground level which would not sufficient for wind power generation. However, the established Singapore wind map is expected to be applied for wind environment assessment and urban planning purpose.

WindSim을 이용한 풍황탑 차폐오차 구간의 보정치 검증 (Validation of Calibrated Wind Data Sector including Shadow Effects of a Meteorological Mast Using WindSim)

  • 박근성;유기완;김현구
    • 풍력에너지저널
    • /
    • 제4권2호
    • /
    • pp.34-39
    • /
    • 2013
  • The wind resource assessment for measured wind data over 1 year by using the meteorological mast should be a prerequisite for business feasibility of the wind farm development. Even though the direction of boom mounting the wind vane and anemometer is carefully engineered to escape the interference of wakes generated from the met-mast structures, the shadow effect is not completely avoided due to seasonal winds in the Korean Peninsula. The shadow effect should be properly calibrated because it is able to distort the wind resources. In this study a calibration method is introduced for the measured wind data at Julpo in Jeonbuk Province. Each sectoral terrain conditions along the selected wind direction nearby the met-mast is investigated, and the distorted wind data due to shadow effects can be calibrated effectively. The correction factor is adopted for quantitative calibration by carrying out the WindSim analysis.

상용 CFD 프로그램을 이용한 복잡지형에서의 풍속 예측 (Wind Speed Prediction in Complex Terrain Using a Commercial CFD Code)

  • 우재균;김현기;백인수;유능수;남윤수
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.8-22
    • /
    • 2011
  • Investigations on modeling methods of a CFD wind resource prediction program, WindSim for a ccurate predictions of wind speeds were performed with the field measurements. Meteorological Masts having heights of 40m and 50m were installed at two different sites in complex terrain. The wind speeds and direction were monitored from sensors installed on the masts and recorded for one year. Modeling parameters of WindSim input variables for accurate predictions of wind speeds were investigated by performing cross predictions of wind speeds at the masts using the measured data. Four parameters that most affect the wind speed prediction in WindSim including the size of a topographical map, cell sizes in x and y direction, height distribution factors, and the roughness lengths were studied to find out more suitable input parameters for better wind speed predictions. The parameters were then applied to WindSim to predict the wind speed of another location in complex terrain in Korea for validation. The predicted annual wind speeds were compared with the averaged measured data for one year from meteorological masts installed for this study, and the errors were within 6.9%. The results of the proposed practical study are believed to be very useful to give guidelines to wind engineers for more accurate prediction results and time-saving in predicting wind speed of complex terrain that will be used to predict annual energy production of a virtual wind farm in complex terrain.

풍황자원 예측시 기상청 풍황자료의 유효성 (Effectiveness of Wind Data from Automated Weather Stations for Wind Resources Prediction)

  • 황윤석;이원선;백인수;유능수
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.181-186
    • /
    • 2009
  • The wind data measured from automated weather stations (AWS) at complex terrains in Korea was used to predict the wind velocity at nearby sites that are several kilometers away. The ten-minute averaged wind data was measured at a height of 10 meters. A commercial CFD code, WindSIM, based on the weighted averaged Navier-Stokes equation was employed. The results were compared with the data measured using meteorological masts (MM) at a height of 40 meters. The predictions using the AWS data and WindSIM showed good agreements with the measured data.

  • PDF

Sensitivity of WindSIM in Complex Terrain

  • 신종원;한경섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.180.2-180.2
    • /
    • 2010
  • The purpose of this research is to analyze the sensitivity of WindSIM in complex terrain. As the flat areas for wind turbine installation become scarce globally, it becomes inevitable to install wind turbines in complex terrain. In order to predict annual energy production (AEP) in a more precise manner in complex terrain, it is of great importance to conduct such research. Three parameters: reference velocity, roughness and resolution have been chosen to see to which parameter WindSIM was the most sensitive in terms of annual energy production in complex terrain. By fixing two parameters and setting one parameter as a variable, it could be easily found that how annual energy production was effected by the change in each parameter.

  • PDF

1.5MW 풍력발전시스템 출력 성능시험 및 불확도 분석 (Power Performance Testing and Uncertainty Analysis for a 1.5MW Wind turbine)

  • 김건훈;주영철;김대호
    • 한국태양에너지학회 논문집
    • /
    • 제26권4호
    • /
    • pp.63-71
    • /
    • 2006
  • The installed capacity of wind turbines in KOREA are growing and enlarging by the central government's support program. Thus, the importance of power performance verification and its uncertainty analysis are recognizing rapidly. This paper described the Power testing results of a 1.5MW wind turbine and analysed an uncertainty level of measurements. The measured power curves are very closely coincide with the calculated one and the annual power production under the given Rayleigh wind speed distribution are estimated with the $4.7{\sim}22.0%$ of uncertainty but, in the dominant wind speed region as $7{\sim}8m/s$, the uncertainty are stably decreased to $7{\sim}8%$.

차량사고 위험도를 고려한 방풍벽 설치기준 (Decision Making Process for Wind Barrier Installation Considering Car Accident Risk)

  • 김동현;이일근;권순덕;조병완
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.17-26
    • /
    • 2010
  • 본 연구에서는 강풍에 의한 차량의 주행안정성 확보를 위해 설치하는 방풍벽의 설치기준을 제안하였다. 이를 위하여 먼저 차량전용해석 수단인 CarSim 및 TruckSim을 사용하여 풍속 및 차량속도에 따른 횡방향 이탈량을 계산하고, 이로부터 차종별 위험 풍속을 결정하였다. 그리고 방풍벽 설치 여부의 판단을 위해 방풍벽 설치로 인해 얻을 수 있는 사고위험과 주행편익 등을 생애주기 동안의 비용으로 환산하였다. 사고위험 계산을 위해 해당지역의 풍속확률분포, 일평균통행량, 차종별 혼입율 및 구간풍속 지속시간 등을 이용하였다. 방풍벽 설치 전과 후의 총 비용과 편익을 비교하여 방풍벽 설치로 인한 편익이 설치 비용보다 큰 경우 방풍벽을 설치하는 것으로 판정하였다. 수치해석을 통해 고속도로 상의 두 곳을 대상으로 방풍벽 설치 여부에 대한 판정을 수행하였다.

복잡지형에 위치한 풍력발전단지의 연간발전량 예측 비교 연구 (AEP Prediction of a Wind Farm in Complex Terrain - WindPRO Vs. WindSim)

  • 우재균;김현기;김병민;권일한;백인수;유능수
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.1-10
    • /
    • 2012
  • The annual energy production of Gangwon wind farm was predicted for three consecutive years of 2007, 2008 and 2009 using commercial programs, WindPRO and WindSim which are known to be used the most for wind resource prediction in the world. The predictions from the linear code, WindPRO, were compared with both the actual energy prediction presented in the CDM (Clean Development Mechanism) monitoring report of the wind farm and also the predictions from the CFD code, WindSim. The results from WindPRO were close to the actual energy productions and the errors were within 11.8% unlike the expectation. The reason for the low prediction errors was found to be due to the fact that although the wind farm is located in highly complex terrain, the terrain steepness was smaller than a critical angle($21.8^{\circ}$) in front of the wind farm in the main wind direction. Therefore no flow separation was found to occur within the wind farm. The flow separation of the main wind was found to occur mostly behind the wind farm.